BMC geriatrics, 2019
Authors
Tindale, Lauren C, Salema, Diane, Brooks-Wilson, Angela R
Publication Abstract
Super-Seniors are healthy, long-lived individuals who were recruited at age 85 years or older with no history of cancer, cardiovascular disease, diabetes, dementia, or major pulmonary disease. In a 10-year follow-up, we aimed to determine whether surviving Super-Seniors showed compression of morbidity, and to test whether the allele frequencies of longevity-associated variants in APOE and FOXO3 were more extreme in such long-term survivors.

Scientific reports, 2019
Authors
Helbing, Caren C, Hammond, S Austin, Jackman, Shireen H, Houston, Simon, Warren, René L, Cameron, Caroline E, Birol, Inanç
Publication Abstract
Antimicrobial peptides (AMPs) exhibit broad-spectrum antimicrobial activity, and have promise as new therapeutic agents. While the adult North American bullfrog (Rana [Lithobates] catesbeiana) is a prolific source of high-potency AMPs, the aquatic tadpole represents a relatively untapped source for new AMP discovery. The recent publication of the bullfrog genome and transcriptomic resources provides an opportune bridge between known AMPs and bioinformatics-based AMP discovery. The objective of the present study was to identify novel AMPs with therapeutic potential using a combined bioinformatics and wet lab-based approach. In the present study, we identified seven novel AMP precursor-encoding transcripts expressed in the tadpole. Comparison of their amino acid sequences with known AMPs revealed evidence of mature peptide sequence conservation with variation in the prepro sequence. Two mature peptide sequences were unique and demonstrated bacteriostatic and bactericidal activity against Mycobacteria but not Gram-negative or Gram-positive bacteria. Nine known and seven novel AMP-encoding transcripts were detected in premetamorphic tadpole back skin, olfactory epithelium, liver, and/or tail fin. Treatment of tadpoles with 10 nM 3,5,3'-triiodothyronine for 48 h did not affect transcript abundance in the back skin, and had limited impact on these transcripts in the other three tissues. Gene mapping revealed considerable diversity in size (1.6-15 kbp) and exon number (one to four) of AMP-encoding genes with clear evidence of alternative splicing leading to both prepro and mature amino acid sequence diversity. These findings verify the accuracy and utility of the bullfrog genome assembly, and set a firm foundation for bioinformatics-based AMP discovery.

PloS one, 2019
Authors
Haile, Simon, Corbett, Richard D, Bilobram, Steve, Mungall, Karen, Grande, Bruno M, Kirk, Heather, Pandoh, Pawan, MacLeod, Tina, McDonald, Helen, Bala, Miruna, Coope, Robin J, Moore, Richard A, Mungall, Andrew J, Zhao, Yongjun, Morin, Ryan D, Jones, Steven J, Marra, Marco A
Publication Abstract
Next generation RNA-sequencing (RNA-seq) is a flexible approach that can be applied to a range of applications including global quantification of transcript expression, the characterization of RNA structure such as splicing patterns and profiling of expressed mutations. Many RNA-seq protocols require up to microgram levels of total RNA input amounts to generate high quality data, and thus remain impractical for the limited starting material amounts typically obtained from rare cell populations, such as those from early developmental stages or from laser micro-dissected clinical samples. Here, we present an assessment of the contemporary ribosomal RNA depletion-based protocols, and identify those that are suitable for inputs as low as 1-10 ng of intact total RNA and 100-500 ng of partially degraded RNA from formalin-fixed paraffin-embedded tissues.

Nature protocols, 2019
Authors
Hughes, Christopher S, Moggridge, Sophie, Müller, Torsten, Sorensen, Poul H, Morin, Gregg B, Krijgsveld, Jeroen
Publication Abstract
A critical step in proteomics analysis is the optimal extraction and processing of protein material to ensure the highest sensitivity in downstream detection. Achieving this requires a sample-handling technology that exhibits unbiased protein manipulation, flexibility in reagent use, and virtually lossless processing. Addressing these needs, the single-pot, solid-phase-enhanced sample-preparation (SP3) technology is a paramagnetic bead-based approach for rapid, robust, and efficient processing of protein samples for proteomic analysis. SP3 uses a hydrophilic interaction mechanism for exchange or removal of components that are commonly used to facilitate cell or tissue lysis, protein solubilization, and enzymatic digestion (e.g., detergents, chaotropes, salts, buffers, acids, and solvents) before downstream proteomic analysis. The SP3 protocol consists of nonselective protein binding and rinsing steps that are enabled through the use of ethanol-driven solvation capture on the surface of hydrophilic beads, and elution of purified material in aqueous conditions. In contrast to alternative approaches, SP3 combines compatibility with a substantial collection of solution additives with virtually lossless and unbiased recovery of proteins independent of input quantity, all in a simplified single-tube protocol. The SP3 protocol is simple and efficient, and can be easily completed by a standard user in ~30 min, including reagent preparation. As a result of these properties, SP3 has successfully been used to facilitate examination of a broad range of sample types spanning simple and complex protein mixtures in large and very small amounts, across numerous organisms. This work describes the steps and extensive considerations involved in performing SP3 in bottom-up proteomics, using a simplified protein cleanup scenario for illustration.

Methods in molecular biology (Clifton, N.J.), 2019
Authors
Hughes, Christopher S, Sorensen, Poul H, Morin, Gregg B
Publication Abstract
The broad utility of mass spectrometry (MS) for investigating the proteomes of a diverse array of sample types has significantly expanded the use of this technology in biological studies. This widespread use has resulted in a substantial collection of protocols and acquisition approaches designed to obtain the highest-quality data for each experiment. As a result, distilling this information to develop a standard operating protocol for essential workflows, such as bottom-up quantitative shotgun whole proteome analysis, can be complex for users new to MS technology. Further complicating this matter, in-depth description of the methodological choices is seldom given in the literature. In this work, we describe a workflow for quantitative whole proteome analysis that is suitable for biomarker discovery, giving detailed consideration to important stages, including (1) cell lysis and protein cleanup using SP3 paramagnetic beads, (2) quantitative labeling, (3) offline peptide fractionation, (4) MS analysis, and (5) data analysis and interpretation. Special attention is paid to providing comprehensive details for all stages of this proteomics workflow to enhance transferability to external labs. The standardized protocol described here will provide a simplified resource to the proteomics community toward efficient adaptation of MS technology in proteomics studies.

Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2019
Authors
Ennishi, Daisuke, Jiang, Aixiang, Boyle, Merrill, Collinge, Brett, Grande, Bruno M, Ben-Neriah, Susana, Rushton, Christopher, Tang, Jeffrey, Thomas, Nicole, Slack, Graham W, Farinha, Pedro, Takata, Katsuyoshi, Miyata-Takata, Tomoko, Craig, Jeffrey, Mottok, Anja, Meissner, Barbara, Saberi, Saeed, Bashashati, Ali, Villa, Diego, Savage, Kerry J, Sehn, Laurie H, Kridel, Robert, Mungall, Andrew J, Marra, Marco A, Shah, Sohrab P, Steidl, Christian, Connors, Joseph M, Gascoyne, Randy D, Morin, Ryan D, Scott, David W
Publication Abstract
High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (HGBL-DH/TH) has a poor outcome after standard chemoimmunotherapy. We sought to understand the biologic underpinnings of HGBL-DH/TH with BCL2 rearrangements (HGBL-DH/TH- BCL2) and diffuse large B-cell lymphoma (DLBCL) morphology through examination of gene expression.

Oncoimmunology, 2019
Authors
Brown, Scott D, Holt, Robert A
Publication Abstract
The self-immunopeptidome is the repertoire of all self-peptides that can be presented by the combination of MHC variants carried by an individual, defined by their HLA genotype. Each MHC variant presents a distinct set of self-peptides, and the number of peptides in a set is variable. Subjects carrying MHC variants that present fewer self-peptides should also present fewer mutated peptides, resulting in decreased immune pressure on tumor cells. To explore this, we predicted peptide-MHC binding values using all unique 8-11mer human peptides in the human proteome and all available HLA class I allelic variants, for a total of 134 billion unique peptide--MHC binding predictions. From these predictions, we observe that most peptides are able to be presented by relatively few (< 250) MHC, while some can be presented by upwards of 1,500 different MHC. There is substantial overlap among the repertoires of peptides presented by different MHC and no relationship between the number of peptides presented and HLA population frequency. Nearly 30% of self-peptides are presentable by at least one MHC, leaving 70% of the human peptidome unsurveyed by T cells. We observed similar distributions of predicted self-immunopeptidome sizes in cancer subjects compared to controls, and within the pan-cancer population, predicted self-immunopeptidome size combined with mutational load to predict survival. Self-immunopeptidome analysis revealed evidence for tumor immunoediting and identified specific peptide positions that most influence immunogenicity. Because self-immunopeptidome size is defined by HLA genotypes and approximates neoantigen load, HLA genotyping could offer a rapid predictive biomarker for response to immunotherapy.

Nucleic acids research, 2019
Authors
Haile, Simon, Corbett, Richard D, Bilobram, Steve, Bye, Morgan H, Kirk, Heather, Pandoh, Pawan, Trinh, Eva, MacLeod, Tina, McDonald, Helen, Bala, Miruna, Miller, Diane, Novik, Karen, Coope, Robin J, Moore, Richard A, Zhao, Yongjun, Mungall, Andrew J, Ma, Yussanne, Holt, Rob A, Jones, Steven J, Marra, Marco A
Publication Abstract
Tissues used in pathology laboratories are typically stored in the form of formalin-fixed, paraffin-embedded (FFPE) samples. One important consideration in repurposing FFPE material for next generation sequencing (NGS) analysis is the sequencing artifacts that can arise from the significant damage to nucleic acids due to treatment with formalin, storage at room temperature and extraction. One such class of artifacts consists of chimeric reads that appear to be derived from non-contiguous portions of the genome. Here, we show that a major proportion of such chimeric reads align to both the 'Watson' and 'Crick' strands of the reference genome. We refer to these as strand-split artifact reads (SSARs). This study provides a conceptual framework for the mechanistic basis of the genesis of SSARs and other chimeric artifacts along with supporting experimental evidence, which have led to approaches to reduce the levels of such artifacts. We demonstrate that one of these approaches, involving S1 nuclease-mediated removal of single-stranded fragments and overhangs, also reduces sequence bias, base error rates, and false positive detection of copy number and single nucleotide variants. Finally, we describe an analytical approach for quantifying SSARs from NGS data.

PloS one, 2019
Authors
Schuetz, Johanna M, Grundy, Anne, Lee, Derrick G, Lai, Agnes S, Kobayashi, Lindsay C, Richardson, Harriet, Long, Jirong, Zheng, Wei, Aronson, Kristan J, Spinelli, John J, Brooks-Wilson, Angela R
Publication Abstract
Inflammation contributes to breast cancer development through its effects on cell damage. This damage is usually dealt with by key genes involved in apoptosis and autophagy pathways.

Methods in molecular biology (Clifton, N.J.), 2019
Authors
Alcaide, Miguel, Rushton, Christopher, Morin, Ryan D
Publication Abstract
Liquid biopsies are rapidly emerging as powerful tools for the early detection of cancer, noninvasive genomic profiling of localized or metastatic tumors, prompt detection of treatment resistance-associated mutations, and monitoring of therapeutic response and minimal residual disease in patients during clinical follow-up. Growing evidence strongly supports the utility of circulating tumor DNA (ctDNA) as a biomarker for the stratification and clinical management of lymphoma patients. However, ctDNA is diluted by variable amounts of cell-free DNA (cfDNA) shed by nonneoplastic cells causing a background signal of wild-type DNA that limits the sensitivity of methods that rely on DNA sequencing. Here, we describe an error suppression method for single-molecule counting that relies on targeted sequencing of cfDNA libraries constructed with semi-degenerate barcode adapters. Custom pools of biotinylated DNA baits for target enrichment can be designed to specifically track somatic mutations in one patient, survey mutation hotspots with diagnostic and prognostic value or be comprised of comprehensive gene panels with broad patient coverage in lymphoma. Such methods are amenable to track ctDNA levels during longitudinal liquid biopsy testing with high specificity and sensitivity and characterize, in real time, the genetic profiles of tumors without the need of standard invasive biopsies. The analysis of ultra-deep sequencing data according to the bioinformatics pipelines also described in this chapter affords to harness lower limits of detection for ctDNA below 0.1%.
Back to top