With more than 40 peer-reviewed scientific publications, findings from the POG program are influencing precision oncology approaches around the world.

POG publications

Clinical Cancer Research, 2019
Authors
Martin R. Jones, Laura M. Williamson, James T. Topham, Michael K.C. Lee, Angela Goytain, Julie Ho, Robert E. Denroche, GunHo Jang, Erin Pleasance, Yaoquing Shen, Joanna M. Karasinska, John P. McGhie, Sharlene Gill, Howard J. Lim, Malcolm J. Moore, Hui-li Wong, Tony Ng, Stephen Yip, Wei Zhang, Sara Sadeghi, Carolyn Reisle, Andrew J. Mungall, Karen L. Mungall, Richard A. Moore, Yussanne Ma, Jennifer J. Knox, Steven Gallinger, Janessa Laskin, Marco A. Marra, David F. Schaeffer, Steven J.M. Jones and Daniel J. Renouf
Publication Abstract

Purpose: Gene fusions involving neuregulin 1 (NRG1) have been noted in multiple cancer types and have potential therapeutic implications. Although varying results have been reported in other cancer types, the efficacy of the HER-family kinase inhibitor afatinib in the treatment of NRG1 fusion-positive pancreatic ductal adenocarcinoma is not fully understood.

Experimental design: Forty-seven patients with pancreatic ductal adenocarcinoma received comprehensive whole-genome and transcriptome sequencing and analysis. Two patients with gene fusions involving NRG1 received afatinib treatment, with response measured by pretreatment and posttreatment PET/CT imaging.

Results: Three of 47 (6%) patients with advanced pancreatic ductal adenocarcinoma were identified as KRAS wild type by whole-genome sequencing. All KRAS wild-type tumors were positive for gene fusions involving the ERBB3 ligand NRG1. Two of 3 patients with NRG1 fusion-positive tumors were treated with afatinib and demonstrated a significant and rapid response while on therapy.

Conclusions: This work adds to a growing body of evidence that NRG1 gene fusions are recurrent, therapeutically actionable genomic events in pancreatic cancers. Based on the clinical outcomes described here, patients with KRAS wild-type tumors harboring NRG1 gene fusions may benefit from treatment with afatinib.

Cold Spring Harbor Molecular Case Studies, 2019
Authors
Derek Wong, Yaoqing Shen, Adrian B. Levine, Erin Pleasance, Martin Jones, Karen Mungall, Brian Thiessen, Brian Toyota, Janessa Laskin, Steven J.M. Jones, Marco A. Marra and Stephen Yip
Publication Abstract

Effective management of brain and spine tumors relies on a multidisciplinary approach encompassing surgery, radiation, and systemic therapy. In the era of personalized oncology, the latter is complemented by various molecularly targeting agents. Precise identification of cellular targets for these drugs requires comprehensive profiling of the cancer genome coupled with an efficient analytic pipeline, leading to an informed decision on drug selection, prognosis, and confirmation of the original pathological diagnosis. Acquisition of optimal tumor tissue for such analysis is paramount and often presents logistical challenges in neurosurgery. Here, we describe the experience and results of the Personalized OncoGenomics (POG) program with a focus on tumors of the central nervous system (CNS). Patients with recurrent CNS tumors were consented and enrolled into the POG program prior to accrual of tumor and matched blood followed by whole-genome and transcriptome sequencing and processing through the POG bioinformatic pipeline. Sixteen patients were enrolled into POG. In each case, POG analyses identified genomic drivers including novel oncogenic fusions, aberrant pathways, and putative therapeutic targets. POG has highlighted that personalized oncology is truly a multidisciplinary field, one in which neurosurgeons must play a vital role if these programs are to succeed and benefit our patients.

JCO Precision Oncology, 2019
Authors
Xiaolan Feng, Erin Pleasance, Eric Y. Zhao, Tony Ng, Jasleen K. Grewal, Nissreen Mohammad, Sara K. Taylor, Christine Simmons, Amirrtha Srikanthan, S. Rod Rassekh, Rebecca Deyell, Jennifer Rauw, Meg Knowling, Kong Khoo,Ursula Lee, Krista Noonan, Jason Hart, R. Petter Tonseth, Yaoqing Shen, Emma Titmuss, Martin Jones,Melika Bonakdar, Caralyn Reisle, Greg A. Taylor, Simon Chan, Karen Mungall, Eric Chuah, Yongjun Zhao, Andrew Mungall, ,Richard Moore, Howard Lim, ,Daniel J. Renouf, ,Karen Gelmon, ,Stephen Yip, Steven J.M. Jones, ,Marco Marra, ,and Janessa Laskin
Publication Abstract

This study investigated therapeutic potential of integrated genome and transcriptome profiling of metastatic sarcoma, a rare but extremely heterogeneous group of aggressive mesenchymal malignancies with few systemic therapeutic options.

Forty-three adult patients with advanced or metastatic non-GI stromal tumor sarcomas of various histology subtypes who were enrolled in the Personalized OncoGenomics program at BC Cancer were included in this study. Fresh tumor tissues along with blood samples underwent whole-genome and transcriptome sequencing.

The most frequent genomic alterations in this cohort are large-scale structural variation and somatic copy number variation. Outlier RNA expression as well as somatic copy number variations, structural variations, and small mutations together suggest the presence of one or more potential therapeutic targets in the majority of patients in our cohort. Point mutations or deletions in known targetable cancer genes are rare; for example, tuberous sclerosis complex 2 provides a rationale for targeting the mammalian target of rapamycin pathway, resulting in a few patients with exceptional clinical benefit from everolimus. In addition, we observed recurrent 17p11-12 amplifications, which seem to be a sarcoma-specific event. This may suggest that this region harbors an oncogene(s) that is significant for sarcoma tumorigenesis. Furthermore, some sarcoma tumors carrying a distinct mutational signature suggestive of homologous recombination deficiency seem to demonstrate sensitivity to double-strand DNA–damaging agents.

Integrated large-scale genomic analysis may provide insights into potential therapeutic targets as well as novel biologic features of metastatic sarcomas that could fuel future experimental and clinical research and help design biomarker-driven basket clinical trials for novel therapeutic strategies.

Learn more.

Cold Spring Harbor Molecular Case Studies, 2019
Authors
Laura M. Williamson, Michael Steel, Jasleen K. Grewal, My Lihn Thibodeau, Eric Y. Zhao, Jonathan M. Loree, Kevin C. Yang, Sharon M. Gorski, Andrew J. Mungall, Karen L. Mungall, Richard A. Moore, Marco A. Marra, Janessa Laskin, Daniel J. Renouf, David F. Schaeffer and Steven J.M. Jones
Publication Abstract

Pancreatic neuroendocrine neoplasms (PanNENs) represent a minority of pancreatic neoplasms that exhibit variability in prognosis. Ongoing mutational analyses of PanNENs have found recurrent abnormalities in chromatin remodeling genes (e.g., DAXX and ATRX), and mTOR pathway genes (e.g., TSC2, PTEN PIK3CA, and MEN1), some of which have relevance to patients with related familial syndromes. Most recently, grade 3 PanNENs have been divided into two groups based on differentiation, creating a new group of well-differentiated grade 3 neuroendocrine tumors (PanNETs) that have had a limited whole-genome level characterization to date. In a patient with a metastatic well-differentiated grade 3 PanNET, our study utilized whole-genome sequencing of liver metastases for the comparative analysis and detection of single-nucleotide variants, insertions and deletions, structural variants, and copy-number variants, with their biologic relevance confirmed by RNA sequencing. We found that this tumor most notably exhibited a TSC1-disrupting fusion, showed a novel CHD7-BEND2 fusion, and lacked any somatic variants in ATRX, DAXX, and MEN1.

JAMA Network Open, 2019
Authors
Jasleen K. Grewal, Basile Tessier-Cloutier, Martin Jones, Sitanshu Gakkhar, Yussanne Ma, Richard Moore, Andrew J. Mungall, Yongjun Zhao, Michael D. Taylor, Karen Gelmon, Howard Lim, Daniel Renouf, Janessa Laskin, Marco Marra, Stephen Yip, Steven J. M. Jones
Publication Abstract

Importance: A molecular diagnostic method that incorporates information about the transcriptional status of all genes across multiple tissue types can strengthen confidence in cancer diagnosis.

Objective: To determine the practical use of a whole transcriptome-based pan-cancer method in diagnosing primary and metastatic cancers and resolving complex diagnoses.

Design, setting, and participants: This cross-sectional diagnostic study assessed Supervised Cancer Origin Prediction Using Expression (SCOPE), a machine learning method using whole-transcriptome RNA sequencing data. Training was performed on publicly available primary cancer data sets, including The Cancer Genome Atlas. Testing was performed retrospectively on untreated primary cancers and treated metastases from volunteer adult patients at BC Cancer in Vancouver, British Columbia, from January 1, 2013, to March 31, 2016, and testing spanned 10 822 samples and 66 output classes representing untreated primary cancers (n = 40) and adjacent normal tissues (n = 26). SCOPE's performance was demonstrated on 211 untreated primary mesothelioma cancers and 201 treatment-resistant metastatic cancers. Finally, SCOPE was used to identify the putative site of origin in 15 cases with initial presentation as cancers with unknown primary of origin.

Results: A total of 10 688 adult patient samples representing 40 untreated primary tumor types and 26 adjacent-normal tissues were used for training. Demographic data were not available for all data sets. Among the training data set, 5157 of 10 244 (50.3%) were male and the mean (SD) age was 58.9 (14.5) years. Testing was performed on 211 patients with untreated primary mesothelioma (173 [82.0%] male; mean [SD] age, 64.5 [11.3] years); 201 patients with treatment-resistant cancers (141 [70.1%] female; mean [SD] age, 55.6 [12.9] years); and 15 patients with cancers of unknown primary of origin; among the treatment-resistant cancers, 168 were metastatic, and 33 were the primary presentation. An accuracy rate of 99% was obtained for primary epithelioid mesotheliomas tested (125 of 126). The remaining 85 mesotheliomas had a mixed etiology (sarcomatoid mesotheliomas) and were correctly identified as a mixture of their primary components, with potential implications in resolving subtypes and incidences of mixed histology. SCOPE achieved an overall mean (SD) accuracy rate of 86% (11%) and F1 score of 0.79 (0.12) on the 201 treatment-resistant cancers and matched 12 of 15 of the putative diagnoses for cancers with indeterminate diagnosis from conventional pathology.

Conclusions and relevance: These results suggest that machine learning approaches incorporating multiple tumor profiles can more accurately identify the cancerous state and discriminate it from normal cells. SCOPE uses the whole transcriptomes from normal and tumor tissues, and results of this study suggest that it performs well for rare cancer types, primary cancers, treatment-resistant metastatic cancers, and cancers of unknown primary of origin. Genes most relevant in SCOPE's decision making were examined, and several are known biological markers of respective cancers. SCOPE may be applied as an orthogonal diagnostic method in cases where the site of origin of a cancer is unknown, or when standard pathology assessment is inconclusive.

Cold Spring Harbor Molecular Case Studies, 2019
Authors
My Linh Thibodeau, Eric Y. Zhao, Caralyn Reisle, Carolyn Ch'ng, Hui-Li Wong, Yaoqing Shen, Martin R. Jones, Howard J. Lim, Sean Young, Carol Cremin, Erin Pleasance, Wei Zhang, Robert Holt, Peter Eirew, Joanna Karasinska, Steve E. Kalloger, Greg Taylor, Elisa Majounie, Melika Bonakdar, Zusheng Zong, Dustin Bleile, Readman Chiu, Inanc Birol, Karen Gelmon, Caroline Lohrisch, Karen L. Mungall, Andrew J. Mungall, Richard Moore, Yussanne P. Ma, Alexandra Fok, Stephen Yip, Aly Karsan, David Huntsman, David F. Schaeffer, Janessa Laskin, Marco A. Marra, Daniel J. Renouf, Steven J.M. Jones and Kasmintan A. Schrader
Publication Abstract

We report a case of early-onset pancreatic ductal adenocarcinoma in a patient harboring biallelic MUTYH germline mutations, whose tumor featured somatic mutational signatures consistent with defective MUTYH-mediated base excision repair and the associated driver KRAS transversion mutation p.Gly12Cys. Analysis of an additional 730 advanced cancer cases (N = 731) was undertaken to determine whether the mutational signatures were also present in tumors from germline MUTYH heterozygote carriers or if instead the signatures were only seen in those with biallelic loss of function. We identified two patients with breast cancer each carrying a pathogenic germline MUTYH variant with a somatic MUTYH copy loss leading to the germline variant being homozygous in the tumor and demonstrating the same somatic signatures. Our results suggest that monoallelic inactivation of MUTYH is not sufficient for C:G>A:T transversion signatures previously linked to MUTYH deficiency to arise (N = 9), but that biallelic complete loss of MUTYH function can cause such signatures to arise even in tumors not classically seen in MUTYH-associated polyposis (N = 3). Although defective MUTYH is not the only determinant of these signatures, MUTYH germline variants may be present in a subset of patients with tumors demonstrating elevated somatic signatures possibly suggestive of MUTYH deficiency (e.g., COSMIC Signature 18, SigProfiler SBS18/SBS36, SignatureAnalyzer SBS18/SBS36).

Cold Spring Harbor Molecular Case Studies, 2019
Authors
Erica S. Tsang, Yaoqing Shen, Negar Chooback, Cheryl Ho, Martin Jones, Daniel J. Renouf, Howard Lim, Sophie Sun, Stephen Yip, Erin Pleasance, Diana N. Ionescu, Karen Mungall, Katayoon Kasaian, Yussanne Ma, Yongjun Zhao, Andrew Mungall, Richard Moore, Steven J.M. Jones, Marco Marra and Janessa Laskin
Publication Abstract

The Personalized Onco-Genomics (POG) program at BC Cancer integrates whole-genome (DNA) and RNA sequencing into practice for metastatic malignancies. We examined the subgroup of patients with metastatic non-small-cell lung cancer (NSCLC) and report the prevalence of actionable targets, treatments, and outcomes. We identified patients who were enrolled in the POG program between 2012 and 2016 who had a tumor biopsy and blood samples with comprehensive DNA (80×, 40× normal) and RNA sequencing followed by in-depth bioinformatics to identify potential cancer drivers and actionable targets. In NSCLC cases, we compared the progression-free survival (PFS) of "POG-informed therapies" with the PFS of the last regimen prior to POG (PFS ratio). In 29 NSCLC cases, 11 were male (38%), the median age was 60.2 yr (range: 39.4-72.6), and histologies included were adenocarcinoma (93%) and squamous cell carcinoma (7%). Potential molecular targets (i.e., cancer drivers including TP53 mutations) were identified in 26 (90%), and 21 (72%) had actionable targets. Therapies based on standard-of-care mutation analysis, such as EGFR mutations, were not considered POG-informed therapies. Thirteen received POG-informed therapies, of which three had no therapy before POG; therefore a comparator PFS could not be obtained. Of 10 patients with POG-informed therapy, median PFS ratio was 0.94 (IQR 0.2-3.4). Three (30%) had a PFS ratio ≥1.3, and three (30%) had a PFS ratio ≥0.8 and <1.3. In this small cohort of NSCLC, 30% demonstrated longer PFS with POG-informed therapies. Larger studies will help clarify the role of whole-genome analysis in clinical practice.

Cold Spring Harbor Molecular Case Studies, 2018
Authors
Jenny J. Ko, Jasleen K. Grewal, Tony Ng, Jean-Michel Lavoie, My Linh Thibodeau, Yaoqing Shen, Andrew J. Mungall, Greg Taylor, Kasmintan A. Schrader, Steven J.M. Jones, Christian Kollmannsberger, Janessa Laskin and Marco A. Marra
Publication Abstract

Thyroid-like follicular renal cell carcinoma (TLFRCC) is a rare cancer with few reports of metastatic disease. Little is known regarding genomic characteristics and therapeutic targets. We present the clinical, pathologic, genomic, and transcriptomic analyses of a case of a 27-yr-old male with TLFRCC who presented initially with bone metastases of unknown primary. Genomic DNA from peripheral blood and metastatic tumor samples were sequenced. A transcriptome of 280 million sequence reads was generated from the same tumor sample. Tumor somatic expression profiles were analyzed to detect aberrant expression. Genomic and transcriptomic data sets were integrated to reveal dysregulation in pathways and identify potential therapeutic targets. Integrative genomic analysis with The Cancer Genome Atlas (TCGA) data set revealed the following outliers in gene expression profiles: CDK6 (81st percentile), MYC (99th percentile), AR (100th percentile), PDGFRA and PDGFRB (99th and 100th percentiles, respectively), and MAP2K2 (86th percentile). The patient received first-line sunitinib to target PDGFRA and PDGFRB and had stable disease for >6 mo, followed by nivolumab upon progression. To the authors’ knowledge, this is the first reported case of comprehensive somatic genomic analyses in a patient with metastatic TLFRCC. Somatic analyses provided molecular confirmation of the primary site of cancer and potential therapeutic strategies in a rare disease with little evidence of efficacy on systemic therapy.

JCO Precision Oncology, 2018
Authors
Hui-li Wong, Eric Y. Zhao, Martin R. Jones, Caralyn R. Reisle, Peter Eirew, Erin Pleasance, Bruno M. Grande, Joanna M. Karasinska, Steve E. Kalloger, Howard J. Lim, Yaoqing Shen, Stephen Yip, Ryan D. Morin, Janessa Laskin, Marco A. Marra, Steven J.M. Jones, Kasmintan A. Schrader, David F. Schaeffer, and Daniel J. Renouf
Publication Abstract

Homologous recombination (HR) facilitates error-free repair of double-strand DNA breaks and interstrand crosslinks.1 Mutations in BRCA1, BRCA2, and other genes responsible for HR are prevalent among human cancers and cause HR deficiency (HRD) and genomic instability.2 Recent evidence has shown that BRCA1 and BRCA2 mutations are associated with improved outcomes on platinum-based chemotherapy in pancreatic cancer,3-5 which mirrors more-established findings from breast cancer.6

Whole-genome sequencing (WGS) efforts have identified mutational and structural rearrangement signatures linked to BRCA1 and BRCA2 mutations in breast and other cancers,7 which may predict response to platinum-based chemotherapy8 and poly (ADP-ribose) polymerase inhibitors.9 However, the role signature timing plays in treatment response has not been elucidated but could help to distinguish currently active, actionable mutational processes from historically active ones.

We present the first clinical application of HRD dynamics across spatially and temporally distinct biopsy specimens of a pancreatic ductal adenocarcinoma (PDAC). This approach helped to reconcile the following paradoxical findings: genomic stability and low HRD mutation signature despite a germline BRCA1 mutation and exceptional response to fluorouracil, oxaliplatin, leucovorin, and irinotecan (FOLFIRINOX). The findings highlight the potential value of considering timing in the clinical interpretation of mutation signatures.

Learn more.

JCO Precision Oncology, 2018
Authors
Yulia Newton, S. Rod Rassekh, Rebecca J. Deyell, Yaoqing Shen, Martin R. Jones, Chris Dunham, Stephen Yip, Sreeja Leelakumari, Jingchun Zhu, Duncan McColl, Teresa Swatloski, Sofie R. Salama, Tony Ng, Glenda Hendson, Anna F. Lee, Yussanne Ma, Richard Moore, Andrew J. Mungall, David Haussler, Joshua M. Stuart, Colleen Jantzen, Janessa Laskin, Steven J.M. Jones, Marco A. Marra, and Olena Morozova
Publication Abstract

Clinical detection of sequence and structural variants in known cancer genes points to viable treatment options for a minority of children with cancer.1 To increase the number of children who benefit from genomic profiling, gene expression information must be considered alongside mutations.2,3 Although high expression has been used to nominate drug targets for pediatric cancers,4,5 its utility has not been evaluated in a systematic way.6 We describe a child with a rare sarcoma that was profiled with whole-genome and RNA sequencing (RNA-Seq) techniques. Although the tumor did not harbor DNA mutations targetable by available therapies, incorporation of gene expression information derived from RNA-Seq analysis led to a therapy that produced a significant clinical response. We use this case to describe a framework for inclusion of gene expression into the clinical genomic evaluation of pediatric tumors.

POG-associated publications

Nucleic Acids Research, 2019
Authors
Simon Haile, Richard D Corbett, Steve Bilobram, Morgan H Bye, Heather Kirk, Pawan Pandoh, Eva Trinh, Tina MacLeod, Helen McDonald, Miruna Bala, Diane Miller, Karen Novik, Robin J Coope, Richard A Moore, Yongjun Zhao, Andrew J Mungall, Yussanne Ma, Rob A Holt, Steven J Jones, Marco A Marra
Publication Abstract

Tissues used in pathology laboratories are typically stored in the form of formalin-fixed, paraffin-embedded (FFPE) samples. One important consideration in repurposing FFPE material for next generation sequencing (NGS) analysis is the sequencing artifacts that can arise from the significant damage to nucleic acids due to treatment with formalin, storage at room temperature and extraction. One such class of artifacts consists of chimeric reads that appear to be derived from non-contiguous portions of the genome. Here, we show that a major proportion of such chimeric reads align to both the 'Watson' and 'Crick' strands of the reference genome. We refer to these as strand-split artifact reads (SSARs). This study provides a conceptual framework for the mechanistic basis of the genesis of SSARs and other chimeric artifacts along with supporting experimental evidence, which have led to approaches to reduce the levels of such artifacts. We demonstrate that one of these approaches, involving S1 nuclease-mediated removal of single-stranded fragments and overhangs, also reduces sequence bias, base error rates, and false positive detection of copy number and single nucleotide variants. Finally, we describe an analytical approach for quantifying SSARs from NGS data.

PLoS One, 2017
Authors
Simon Haile , Pawan Pandoh, Helen McDonald, Richard D Corbett, Philip Tsao, Heather Kirk, Tina MacLeod, Martin Jones, Steve Bilobram, Denise Brooks, Duane Smailus, Christian Steidl, David W Scott, Miruna Bala, Martin Hirst, Diane Miller, Richard A Moore, Andrew J Mungall, Robin J Coope, Yussanne Ma, Yongjun Zhao, Rob A Holt, Steven J Jones, Marco A Marra

Publication Abstract

Curation and storage of formalin-fixed, paraffin-embedded (FFPE) samples are standard procedures in hospital pathology laboratories around the world. Many thousands of such samples exist and could be used for next generation sequencing analysis. Retrospective analyses of such samples are important for identifying molecular correlates of carcinogenesis, treatment history and disease outcomes. Two major hurdles in using FFPE material for sequencing are the damaged nature of the nucleic acids and the labor-intensive nature of nucleic acid purification. These limitations and a number of other issues that span multiple steps from nucleic acid purification to library construction are addressed here. We optimized and automated a 96-well magnetic bead-based extraction protocol that can be scaled to large cohorts and is compatible with automation. Using sets of 32 and 91 individual FFPE samples respectively, we generated libraries from 100 ng of total RNA and DNA starting amounts with 95-100% success rate. The use of the resulting RNA in micro-RNA sequencing was also demonstrated. In addition to offering the potential of scalability and rapid throughput, the yield obtained with lower input requirements makes these methods applicable to clinical samples where tissue abundance is limiting.

Back to top