With more than 35 peer-reviewed scientific publications, findings from the POG program are influencing precision oncology approaches around the world.

POG publications

Clinical Cancer Research, 2020
Authors
Alexandra Pender, Emma Titmuss, Erin D Pleasance, Kevin Y Fan, Hillary Pearson, Scott D Brown, Cameron J Grisdale, James T Topham, Yaoqing Shen, Melika Bonakdar, Greg Taylor, Laura M Williamson, Karen L Mungall, Eric Chuah, Andrew J Mungall, Richard A Moore, Jean-Michel Lavoie, Stephen Yip, Howard Lim, Daniel J Renouf, Sophie Sun, Robert A Holt, Steven JM Jones, Marco A Marra, Janessa Laskin
Publication Abstract

Purpose: Immune checkpoint inhibitors (ICIs) have revolutionised the treatment of solid tumours with dramatic and durable responses seen across multiple tumour types. However, identifying patients who will respond to these drugs remains challenging, particularly in the context of advanced and previously treated cancers.

Experimental design: We characterised fresh tumour biopsies from a heterogeneous pan-cancer cohort of 98 patients with metastatic predominantly pre-treated disease through the Personalized OncoGenomics (POG) program at BC Cancer using whole genome and transcriptome analysis (WGTA). Baseline characteristics and follow up data were collected retrospectively.

Results: We found that tumour mutation burden (TMB), independent of mismatch repair status, was the most predictive marker of time to progression (TTP, p=0.007), but immune related CD8+ T cell and M1-M2 macrophage ratio scores were more predictive for overall survival (OS) (p=0.0014 and 0.0012 respectively). While CD274 (PD-L1) gene expression is comparable to protein levels detected by immunohistochemistry (IHC), we did not observe a clinical benefit for patients with this marker. We demonstrate that a combination of markers based on WGTA provides the best stratification of patients (p=0.00071, OS), and also present a case study of possible acquired resistance to pembrolizumab in a non-small cell lung cancer (NSCLC) patient.

Conclusions: Interpreting the tumour-immune interface to predict ICI efficacy remains challenging. WGTA allows for identification of multiple biomarkers simultaneously that in combination may help to identify responders, particularly in the context of a heterogeneous population of advanced and previously treated cancers, thus precluding tumour type-specific testing.

Journal of Oncology Pharmacy Practice, 2020
Authors
Jolene Guenter, Shirin Abadi, Howard Lim, Stephen Chia, Ryan Woods, Martin Jones, Nevena Rebic, Daniel J Renouf, Janessa Laskin, Marco Marra
Publication Abstract

Introduction: Carcinogenesis is driven by an array of complex genomic patterns; these patterns can render an individual resistant or sensitive to certain chemotherapy agents. The Personalized Oncogenomics (POG) project at BC Cancer has performed integrative genomic analysis of whole tumour genomes and transcriptomes for over 700 patients with advanced cancers, with an aim to predict therapeutic sensitivities. The aim of this study was to utilize the POG genomic data to evaluate a discrete set of biomarkers associated with chemo-sensitivity or-resistance in advanced stage breast and colorectal cancer POG patients.

Methods: This was a retrospective multi-centre analysis across all BC CANCER sites. All breast and colorectal cancer patients enrolled in the POG program between July 1, 2012 and November 30, 2016 were eligible for inclusion. Within the breast cancer population, those treated with capecitabine, paclitaxel, and everolimus were analyzed, and for the colorectal cancer patients, those treated with capecitabine, bevacizumab, irinotecan, and oxaliplatin were analyzed. The expression levels of the selected biomarkers of interest (EPHB4, FIGF, CD133, DICER1, DPYD, TYMP, TYMS, TAP1, TOP1, CKDN1A, ERCC1, GSTP1, BRCA1, PTEN, ABCB1, TLE3, and TXNDC17) were reported as mRNA percentiles.

Results: For the breast cancer population, there were 32 patients in the capecitabine cohort, 15 in the everolimus cohort, and 12 in the paclitaxel cohort. For the colorectal cancer population, there were 29 patients in the bevacizumab cohort, 12 in the oxaliplatin cohort, 29 in the irinotecan cohort, and 6 in the capecitabine cohort. Of the biomarkers evaluated, the strongest associations were found between Bevacizumab-based therapy and DICER1 (P = 0.0445); and between capecitabine therapy and TYMP (P = 0.0553).

Conclusions: Among breast cancer patients, higher TYMP expression was associated with sensitivity to capecitabine. Among colorectal cancer patients, higher DICER1 expression was associated with sensitivity to bevacizumab-based therapy. This study supports further assessment of the potential predictive value of mRNA expression of these genomic biomarkers.

Genetics in Medicine, 2020
Authors
My Linh Thibodeau, Kieran O'Neill, Katherine Dixon, Caralyn Reisle, Karen L Mungall, Martin Krzywinski, Yaoqing Shen, Howard J Lim, Dean Cheng, Kane Tse, Tina Wong, Eric Chuah, Alexandra Fok, Sophie Sun, Daniel Renouf, David F Schaeffer, Carol Cremin, Stephen Chia, Sean Young, Pawan Pandoh, Stephen Pleasance, Erin Pleasance, Andrew J Mungall, Richard Moore, Stephen Yip, Aly Karsan, Janessa Laskin, Marco A Marra, Kasmintan A Schrader, Steven J M Jones
Publication Abstract

Structural variants (SVs) may be an underestimated cause of hereditary cancer syndromes given the current limitations of short-read next-generation sequencing. Here we investigated the utility of long-read sequencing in resolving germline SVs in cancer susceptibility genes detected through short-read genome sequencing.

Nature Cancer, 2020
Authors
Erin Pleasance, Emma Titmuss, Laura Williamson, Harwood Kwan, Luka Culibrk, Eric Y. Zhao, Katherine Dixon, Kevin Fan, Reanne Bowlby, Martin R. Jones, Yaoqing Shen, Jasleen K. Grewal, Jahanshah Ashkani, Kathleen Wee, Cameron J. Grisdale, My Linh Thibodeau, Zoltan Bozoky, Hillary Pearson, Elisa Majounie, Tariq Vira, Reva Shenwai, Karen L. Mungall, Eric Chuah, Anna Davies, Mya Warren, Caralyn Reisle, Melika Bonakdar, Gregory A. Taylor, Veronika Csizmok, Simon K. Chan, Zusheng Zong, Steve Bilobram, Amir Muhammadzadeh, Darryl D’Souza, Richard D. Corbett, Daniel MacMillan, Marcus Carreira, Caleb Choo, Dustin Bleile, Sara Sadeghi, Wei Zhang, Tina Wong, Dean Cheng, Scott D. Brown, Robert A. Holt, Richard A. Moore, Andrew J. Mungall, Yongjun Zhao, Jessica Nelson, Alexandra Fok, Yussanne Ma, Michael K. C. Lee, Jean-Michel Lavoie, Shehara Mendis, Joanna M. Karasinska, Balvir Deol, Ana Fisic, David F. Schaeffer, Stephen Yip, Kasmintan Schrader, Dean A. Regier, Deirdre Weymann, Stephen Chia, Karen Gelmon, Anna Tinker, Sophie Sun, Howard Lim, Daniel J. Renouf, Janessa Laskin, Steven J. M. Jones & Marco A. Marra
Publication Abstract

Advanced and metastatic tumors with complex treatment histories drive cancer mortality. Here we describe the POG570 cohort, a comprehensive whole-genome, transcriptome and clinical dataset, amenable for exploration of the impacts of therapies on genomic landscapes. Previous exposure to DNA-damaging chemotherapies and mutations affecting DNA repair genes, including POLQ and genes encoding Polζ, were associated with genome-wide, therapy-induced mutagenesis. Exposure to platinum therapies coincided with signatures SBS31 and DSB5 and, when combined with DNA synthesis inhibitors, signature SBS17b. Alterations in ESR1, EGFR, CTNNB1, FGFR1, VEGFA and DPYD were consistent with drug resistance and sensitivity. Recurrent noncoding events were found in regulatory region hotspots of genes including TERT, PLEKHS1, AP2A1 and ADGRG6. Mutation burden and immune signatures corresponded with overall survival and response to immunotherapy. Our data offer a rich resource for investigation of advanced cancers and interpretation of whole-genome and transcriptome sequencing in the context of a cancer clinic.

Learn More.

Investigational New Drugs, 2020
Authors
Jean-Michel Lavoie, Teresa Mitchell, Sung-Eun Lee, Balvir Deol, Stephen K. Chia, Karen A. Gelmon, Christian K. Kollmannsberger, Anna V. Tinker, Steven J. M. Jones, Marco Marra, Janessa Laskin & Daniel J. Renouf
Publication Abstract

Introduction Given the high level of uncertainty surrounding the outcomes of early phase clinical trials, whole genome and transcriptome analysis (WGTA) can be used to optimize patient selection and study assignment. In this retrospective analysis, we reviewed the impact of this approach on one such program. Methods Patients with advanced malignancies underwent fresh tumor biopsies as part of our personalized medicine program (NCT02155621). Tumour molecular data were reviewed for potentially clinically actionable findings and patients were referred to the developmental therapeutics program. Outcomes were reviewed in all patients, including those where trial selection was driven by molecular data (matched) and those where there was no clear molecular rationale (unmatched). Results From January 2014 to January 2018, 28 patients underwent WGTA and enrolled in clinical trials, including 2 patients enrolled in two trials. Fifteen patients were matched to a treatment based on a molecular target. Five patients were matched to a trial based upon single-gene DNA changes, all supported by RNA data. Ten cases were matched on the basis of genome-wide data (n = 4) or RNA gene expression only (n = 6). With a median follow-up of 6.7 months, the median time on treatment was 8.2 weeks. Discussion When compared to single-gene DNA-based data alone, WGTA led to a 3-fold increase in treatment matching. In a setting where there is a high level of uncertainty around both the investigational agents and the biomarkers, more data are needed to fully evaluate the impact of routine use of WGTA.

Cold Spring Harbor Molecular Case Studies, 2019
Authors
Derek Wong, Yaoqing Shen, Adrian B. Levine, Erin Pleasance, Martin Jones, Karen Mungall, Brian Thiessen, Brian Toyota, Janessa Laskin, Steven J.M. Jones, Marco A. Marra and Stephen Yip
Publication Abstract

Effective management of brain and spine tumors relies on a multidisciplinary approach encompassing surgery, radiation, and systemic therapy. In the era of personalized oncology, the latter is complemented by various molecularly targeting agents. Precise identification of cellular targets for these drugs requires comprehensive profiling of the cancer genome coupled with an efficient analytic pipeline, leading to an informed decision on drug selection, prognosis, and confirmation of the original pathological diagnosis. Acquisition of optimal tumor tissue for such analysis is paramount and often presents logistical challenges in neurosurgery. Here, we describe the experience and results of the Personalized OncoGenomics (POG) program with a focus on tumors of the central nervous system (CNS). Patients with recurrent CNS tumors were consented and enrolled into the POG program prior to accrual of tumor and matched blood followed by whole-genome and transcriptome sequencing and processing through the POG bioinformatic pipeline. Sixteen patients were enrolled into POG. In each case, POG analyses identified genomic drivers including novel oncogenic fusions, aberrant pathways, and putative therapeutic targets. POG has highlighted that personalized oncology is truly a multidisciplinary field, one in which neurosurgeons must play a vital role if these programs are to succeed and benefit our patients.

Cold Spring Harbor Molecular Case Studies, 2019
Authors
Laura M. Williamson, Michael Steel, Jasleen K. Grewal, My Lihn Thibodeau, Eric Y. Zhao, Jonathan M. Loree, Kevin C. Yang, Sharon M. Gorski, Andrew J. Mungall, Karen L. Mungall, Richard A. Moore, Marco A. Marra, Janessa Laskin, Daniel J. Renouf, David F. Schaeffer and Steven J.M. Jones
Publication Abstract

Pancreatic neuroendocrine neoplasms (PanNENs) represent a minority of pancreatic neoplasms that exhibit variability in prognosis. Ongoing mutational analyses of PanNENs have found recurrent abnormalities in chromatin remodeling genes (e.g., DAXX and ATRX), and mTOR pathway genes (e.g., TSC2, PTEN PIK3CA, and MEN1), some of which have relevance to patients with related familial syndromes. Most recently, grade 3 PanNENs have been divided into two groups based on differentiation, creating a new group of well-differentiated grade 3 neuroendocrine tumors (PanNETs) that have had a limited whole-genome level characterization to date. In a patient with a metastatic well-differentiated grade 3 PanNET, our study utilized whole-genome sequencing of liver metastases for the comparative analysis and detection of single-nucleotide variants, insertions and deletions, structural variants, and copy-number variants, with their biologic relevance confirmed by RNA sequencing. We found that this tumor most notably exhibited a TSC1-disrupting fusion, showed a novel CHD7-BEND2 fusion, and lacked any somatic variants in ATRX, DAXX, and MEN1.

Cold Spring Harbor Molecular Case Studies, 2019
Authors
My Linh Thibodeau, Eric Y. Zhao, Caralyn Reisle, Carolyn Ch'ng, Hui-Li Wong, Yaoqing Shen, Martin R. Jones, Howard J. Lim, Sean Young, Carol Cremin, Erin Pleasance, Wei Zhang, Robert Holt, Peter Eirew, Joanna Karasinska, Steve E. Kalloger, Greg Taylor, Elisa Majounie, Melika Bonakdar, Zusheng Zong, Dustin Bleile, Readman Chiu, Inanc Birol, Karen Gelmon, Caroline Lohrisch, Karen L. Mungall, Andrew J. Mungall, Richard Moore, Yussanne P. Ma, Alexandra Fok, Stephen Yip, Aly Karsan, David Huntsman, David F. Schaeffer, Janessa Laskin, Marco A. Marra, Daniel J. Renouf, Steven J.M. Jones and Kasmintan A. Schrader
Publication Abstract

We report a case of early-onset pancreatic ductal adenocarcinoma in a patient harboring biallelic MUTYH germline mutations, whose tumor featured somatic mutational signatures consistent with defective MUTYH-mediated base excision repair and the associated driver KRAS transversion mutation p.Gly12Cys. Analysis of an additional 730 advanced cancer cases (N = 731) was undertaken to determine whether the mutational signatures were also present in tumors from germline MUTYH heterozygote carriers or if instead the signatures were only seen in those with biallelic loss of function. We identified two patients with breast cancer each carrying a pathogenic germline MUTYH variant with a somatic MUTYH copy loss leading to the germline variant being homozygous in the tumor and demonstrating the same somatic signatures. Our results suggest that monoallelic inactivation of MUTYH is not sufficient for C:G>A:T transversion signatures previously linked to MUTYH deficiency to arise (N = 9), but that biallelic complete loss of MUTYH function can cause such signatures to arise even in tumors not classically seen in MUTYH-associated polyposis (N = 3). Although defective MUTYH is not the only determinant of these signatures, MUTYH germline variants may be present in a subset of patients with tumors demonstrating elevated somatic signatures possibly suggestive of MUTYH deficiency (e.g., COSMIC Signature 18, SigProfiler SBS18/SBS36, SignatureAnalyzer SBS18/SBS36).

Cold Spring Harbor Molecular Case Studies, 2020
Authors
Elisa Majounie, Kathleen Wee, Laura M. Williamson, Martin R. Jones, Erin Pleasance, Howard J. Lim, Cheryl Ho, Daniel J. Renouf, Stephen Yip, Steven J.M. Jones, Marco A. Marra and Janessa Laskin
Publication Abstract

Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide and represents a heterogeneous group of tumors, the majority of which are treated with a combination of surgery, radiation, and chemotherapy. Fluoropyrimidine (5-FU) and its oral prodrug, capecitabine, are commonly prescribed treatments for several solid tumor types including HNSCC. 5-FU-associated toxicity is observed in ∼30% of treated patients and is largely caused by germline polymorphisms in DPYD, which encodes dihydropyrimidine dehydrogenase, a key enzyme of 5-FU catabolism and deactivation. Although the association of germline DPYD alterations with toxicity is well-described, the potential contribution of somatic DPYD alterations to 5-FU sensitivity has not been explored. In a patient with metastatic HNSCC, in-depth genomic and transcriptomic integrative analysis on a biopsy from a metastatic neck lesion revealed alterations in genes that are associated with 5-FU uptake and metabolism. These included a novel somatic structural variant resulting in a partial deletion affecting DPYD, a variant of unknown significance affecting SLC29A1, and homozygous deletion of MTAP There was no evidence of deleterious germline polymorphisms that have been associated with 5-FU toxicity, indicating a potential vulnerability of the tumor to 5-FU therapy. The discovery of the novel DPYD variant led to the initiation of 5-FU treatment that resulted in a rapid response lasting 17 wk, with subsequent relapse due to unknown resistance mechanisms. This suggests that somatic alterations present in this tumor may serve as markers for tumor sensitivity to 5-FU, aiding in the selection of personalized treatment strategies.

Clinical Cancer Research, 2020
Authors
Joanna M. Karasinska, James T. Topham, Steve E. Kalloger, Gun Ho Jang, Robert E. Denroche, Luka Culibrk, Laura M. Williamson, Hui-Li Wong, Michael K.C. Lee, Grainne M. O'Kane, Richard A. Moore, Andrew J. Mungall, Malcolm J. Moore, Cassia Warren, Andrew Metcalfe, Faiyaz Notta, Jennifer J. Knox, Steven Gallinger, Janessa Laskin, Marco A. Marra, Steven J.M. Jones, Daniel J. Renouf and David F. Schaeffer
Publication Abstract

Purpose: Identification of clinically actionable molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) is key to improving patient outcome. Intertumoral metabolic heterogeneity contributes to cancer survival and the balance between distinct metabolic pathways may influence PDAC outcome. We hypothesized that PDAC can be stratified into prognostic metabolic subgroups based on alterations in the expression of genes involved in glycolysis and cholesterol synthesis.

Experimental design: We performed bioinformatics analysis of genomic, transcriptomic, and clinical data in an integrated cohort of 325 resectable and nonresectable PDAC. The resectable datasets included retrospective The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) cohorts. The nonresectable PDAC cohort studies included prospective COMPASS, PanGen, and BC Cancer Personalized OncoGenomics program (POG).

Results: On the basis of the median normalized expression of glycolytic and cholesterogenic genes, four subgroups were identified: quiescent, glycolytic, cholesterogenic, and mixed. Glycolytic tumors were associated with the shortest median survival in resectable (log-rank test P = 0.018) and metastatic settings (log-rank test P = 0.027). Patients with cholesterogenic tumors had the longest median survival. KRAS and MYC-amplified tumors had higher expression of glycolytic genes than tumors with normal or lost copies of the oncogenes (Wilcoxon rank sum test P = 0.015). Glycolytic tumors had the lowest expression of mitochondrial pyruvate carriers MPC1 and MPC2. Glycolytic and cholesterogenic gene expression correlated with the expression of prognostic PDAC subtype classifier genes.

Conclusions: Metabolic classification specific to glycolytic and cholesterogenic pathways provides novel biological insight into previously established PDAC subtypes and may help develop personalized therapies targeting unique tumor metabolic profiles.

POG-associated publications

Nature Reviews Genetics, 2020
Authors
Michelle Chan-Seng-Yue, Jaeseung C. Kim, Gavin W. Wilson, Karen Ng, Eugenia Flores Figueroa, Grainne M. O’Kane, Ashton A. Connor, Robert E. Denroche, Robert C. Grant, Jessica McLeod, Julie M. Wilson, Gun Ho Jang, Amy Zhang, Anna Dodd, Sheng-Ben Liang, Ayelet Borgida, Dianne Chadwick, Sangeetha Kalimuthu, Ilinca Lungu, John M. S. Bartlett, Paul M. Krzyzanowski, Vandana Sandhu, Hervé Tiriac, Fieke E. M. Froeling, Joanna M. Karasinska, James T. Topham, Daniel J. Renouf, David F. Schaeffer, Steven J. M. Jones, Marco A. Marra, Janessa Laskin, Runjan Chetty, Lincoln D. Stein, George Zogopoulos, Benjamin Haibe-Kains, Peter J. Campbell, David A. Tuveson, Jennifer J. Knox, Sandra E. Fischer, Steven Gallinger & Faiyaz Notta
Publication Abstract

Pancreatic adenocarcinoma presents as a spectrum of a highly aggressive disease in patients. The basis of this disease heterogeneity has proved difficult to resolve due to poor tumor cellularity and extensive genomic instability. To address this, a dataset of whole genomes and transcriptomes was generated from purified epithelium of primary and metastatic tumors. Transcriptome analysis demonstrated that molecular subtypes are a product of a gene expression continuum driven by a mixture of intratumoral subpopulations, which was confirmed by single-cell analysis. Integrated whole-genome analysis uncovered that molecular subtypes are linked to specific copy number aberrations in genes such as mutant KRAS and GATA6. By mapping tumor genetic histories, tetraploidization emerged as a key mutational process behind these events. Taken together, these data support the premise that the constellation of genomic aberrations in the tumor gives rise to the molecular subtype, and that disease heterogeneity is due to ongoing genomic instability during progression.

JAMA Network Open, 2019
Authors
Olena M. Vaske, Isabel Bjork, Sofie R. Salama, Holly Beale, Avanthi Tayi Shah, Lauren Sanders, Jacob Pfeil, Du L. Lam, Katrina Learned, Ann Durbin, Ellen T. Kephart, Rob Currie, Yulia Newton, Teresa Swatloski, Duncan McColl, John Vivian, Jingchun Zhu, Alex G. Lee, Stanley G. Leung, Aviv Spillinger, Heng-Yi Liu, Winnie S. Liang, Sara A. Byron, Michael E. Berens, Adam C. Resnick, Norman Lacayo, Sheri L. Spunt, Arun Rangaswami, Van Huynh, Lilibeth Torno, Ashley Plant, Ivan Kirov, Keri B. Zabokrtsky, S. Rod Rassekh, Rebecca J. Deyell, Janessa Laskin, Marco A. Marra, Leonard S. Sender, Sabine Mueller, E. Alejandro Sweet-Cordero, Theodore C. Goldstein, David Haussler,
Publication Abstract

Importance: Pediatric cancers are epigenetic diseases; therefore, considering tumor gene expression information is necessary for a complete understanding of the tumorigenic processes.

Objective: To evaluate the feasibility and utility of incorporating comparative gene expression information into the precision medicine framework for difficult-to-treat pediatric and young adult patients with cancer.

Design, setting, and participants: This cohort study was conducted as a consortium between the University of California, Santa Cruz (UCSC) Treehouse Childhood Cancer Initiative and clinical genomic trials. RNA sequencing (RNA-Seq) data were obtained from the following 4 clinical sites and analyzed at UCSC: British Columbia Children's Hospital (n = 31), Lucile Packard Children's Hospital at Stanford University (n = 80), CHOC Children's Hospital and Hyundai Cancer Institute (n = 46), and the Pacific Pediatric Neuro-Oncology Consortium (n = 24). The study dates were January 1, 2016, to March 22, 2017.

Exposures: Participants underwent tumor RNA-Seq profiling as part of 4 separate clinical trials at partner hospitals. The UCSC either downloaded RNA-Seq data from a partner institution for analysis in the cloud or provided a Docker pipeline that performed the same analysis at a partner institution. The UCSC then compared each participant's tumor RNA-Seq profile with more than 11 000 uniformly analyzed tumor profiles from pediatric and young adult patients with cancer, downloaded from public data repositories. These comparisons were used to identify genes and pathways that are significantly overexpressed in each patient's tumor. Results of the UCSC analysis were presented to clinical partners.

Main outcomes and measures: Feasibility of a third-party institution (UCSC Treehouse Childhood Cancer Initiative) to obtain tumor RNA-Seq data from patients, conduct comparative analysis, and present analysis results to clinicians; and proportion of patients for whom comparative tumor gene expression analysis provided useful clinical and biological information.

Results: Among 144 samples from children and young adults (median age at diagnosis, 9 years; range, 0-26 years; 72 of 118 [61.0%] male [26 patients sex unknown]) with a relapsed, refractory, or rare cancer treated on precision medicine protocols, RNA-Seq-derived gene expression was potentially useful for 99 of 144 samples (68.8%) compared with DNA mutation information that was potentially useful for only 34 of 74 samples (45.9%).

Conclusions and relevance: This study's findings suggest that tumor RNA-Seq comparisons may be feasible and highlight the potential clinical utility of incorporating such comparisons into the clinical genomic interpretation framework for difficult-to-treat pediatric and young adult patients with cancer. The study also highlights for the first time to date the potential clinical utility of harmonized publicly available genomic data sets.

Biotechniques, 2019
Authors
Pawan K Pandoh, Richard D Corbett, Helen McDonald, Miguel Alcaide, Heather Kirk, Eva Trinh, Simon Haile, Tina MacLeod, Duane Smailus, Steve Bilobram, Andrew J Mungall, Yussanne Ma, Richard A Moore, Robin Coope, Yongjun Zhao, Steven JM Jones, Robert A Holt, Aly Karsan, Ryan D Morin, Marco A Marra
Publication Abstract

The analysis of cell-free circulating tumor DNA (ctDNA) is potentially a less invasive, more dynamic assessment of cancer progression and treatment response than characterizing solid tumor biopsies. Standard isolation methods require separation of plasma by centrifugation, a time-consuming step that complicates automation. To address these limitations, we present an automatable magnetic bead-based ctDNA isolation method that eliminates centrifugation to purify ctDNA directly from peripheral blood (PB). To develop and test our method, ctDNA from cancer patients was purified from PB and plasma. We found that allelic fractions of somatic single-nucleotide variants from target gene capture libraries were comparable, indicating that the PB ctDNA purification method may be a suitable replacement for the plasma-based protocols currently in use.

PLoS One, 2019
Authors
Simon Haile, Richard D. Corbett, Steve Bilobram, Karen Mungall, Bruno M. Grande, Heather Kirk, Pawan Pandoh, Tina MacLeod, Helen McDonald, Miruna Bala, Robin J. Coope, Richard A. Moore, Andrew J. Mungall, Yongjun Zhao, Ryan D. Morin, Steven J. Jones, Marco A. Marra
Publication Abstract

Next generation RNA-sequencing (RNA-seq) is a flexible approach that can be applied to a range of applications including global quantification of transcript expression, the characterization of RNA structure such as splicing patterns and profiling of expressed mutations. Many RNA-seq protocols require up to microgram levels of total RNA input amounts to generate high quality data, and thus remain impractical for the limited starting material amounts typically obtained from rare cell populations, such as those from early developmental stages or from laser micro-dissected clinical samples. Here, we present an assessment of the contemporary ribosomal RNA depletion-based protocols, and identify those that are suitable for inputs as low as 1-10 ng of intact total RNA and 100-500 ng of partially degraded RNA from formalin-fixed paraffin-embedded tissues.

Nucleic Acids Research, 2019
Authors
Simon Haile, Richard D Corbett, Steve Bilobram, Morgan H Bye, Heather Kirk, Pawan Pandoh, Eva Trinh, Tina MacLeod, Helen McDonald, Miruna Bala, Diane Miller, Karen Novik, Robin J Coope, Richard A Moore, Yongjun Zhao, Andrew J Mungall, Yussanne Ma, Rob A Holt, Steven J Jones, Marco A Marra
Publication Abstract

Tissues used in pathology laboratories are typically stored in the form of formalin-fixed, paraffin-embedded (FFPE) samples. One important consideration in repurposing FFPE material for next generation sequencing (NGS) analysis is the sequencing artifacts that can arise from the significant damage to nucleic acids due to treatment with formalin, storage at room temperature and extraction. One such class of artifacts consists of chimeric reads that appear to be derived from non-contiguous portions of the genome. Here, we show that a major proportion of such chimeric reads align to both the 'Watson' and 'Crick' strands of the reference genome. We refer to these as strand-split artifact reads (SSARs). This study provides a conceptual framework for the mechanistic basis of the genesis of SSARs and other chimeric artifacts along with supporting experimental evidence, which have led to approaches to reduce the levels of such artifacts. We demonstrate that one of these approaches, involving S1 nuclease-mediated removal of single-stranded fragments and overhangs, also reduces sequence bias, base error rates, and false positive detection of copy number and single nucleotide variants. Finally, we describe an analytical approach for quantifying SSARs from NGS data.

PLoS One, 2017
Authors
Simon Haile , Pawan Pandoh, Helen McDonald, Richard D Corbett, Philip Tsao, Heather Kirk, Tina MacLeod, Martin Jones, Steve Bilobram, Denise Brooks, Duane Smailus, Christian Steidl, David W Scott, Miruna Bala, Martin Hirst, Diane Miller, Richard A Moore, Andrew J Mungall, Robin J Coope, Yussanne Ma, Yongjun Zhao, Rob A Holt, Steven J Jones, Marco A Marra

Publication Abstract

Curation and storage of formalin-fixed, paraffin-embedded (FFPE) samples are standard procedures in hospital pathology laboratories around the world. Many thousands of such samples exist and could be used for next generation sequencing analysis. Retrospective analyses of such samples are important for identifying molecular correlates of carcinogenesis, treatment history and disease outcomes. Two major hurdles in using FFPE material for sequencing are the damaged nature of the nucleic acids and the labor-intensive nature of nucleic acid purification. These limitations and a number of other issues that span multiple steps from nucleic acid purification to library construction are addressed here. We optimized and automated a 96-well magnetic bead-based extraction protocol that can be scaled to large cohorts and is compatible with automation. Using sets of 32 and 91 individual FFPE samples respectively, we generated libraries from 100 ng of total RNA and DNA starting amounts with 95-100% success rate. The use of the resulting RNA in micro-RNA sequencing was also demonstrated. In addition to offering the potential of scalability and rapid throughput, the yield obtained with lower input requirements makes these methods applicable to clinical samples where tissue abundance is limiting.

Back to top