Proceedings of the National Academy of Sciences of the United States of America, 2019
Authors
Shen, Yaoqing, Grisdale, Cameron J, Islam, Sumaiya A, Bose, Pinaki, Lever, Jake, Zhao, Eric Y, Grinshtein, Natalie, Ma, Yussanne, Mungall, Andrew J, Moore, Richard A, Lun, Xueqing, Senger, Donna L, Robbins, Stephen M, Wang, Alice Yijun, MacIsaac, Julia L, Kobor, Michael S, Luchman, H Artee, Weiss, Samuel, Chan, Jennifer A, Blough, Michael D, Kaplan, David R, Cairncross, J Gregory, Marra, Marco A, Jones, Steven J M
Publication Abstract
Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.

Cold Spring Harbor molecular case studies, 2019
Authors
Wong, Derek, Shen, Yaoqing, Levine, Adrian B, Pleasance, Erin, Jones, Martin, Mungall, Karen, Thiessen, Brian, Toyota, Brian, Laskin, Janessa, Jones, Steven J M, Marra, Marco A, Yip, Stephen
Publication Abstract
Effective management of brain and spine tumors relies on a multidisciplinary approach encompassing surgery, radiation, and systemic therapy. In the era of personalized oncology, the latter is complemented by various molecularly targeting agents. Precise identification of cellular targets for these drugs requires comprehensive profiling of the cancer genome coupled with an efficient analytic pipeline, leading to an informed decision on drug selection, prognosis, and confirmation of the original pathological diagnosis. Acquisition of optimal tumor tissue for such analysis is paramount and often presents logistical challenges in neurosurgery. Here, we describe the experience and results of the Personalized OncoGenomics (POG) program with a focus on tumors of the central nervous system (CNS). Patients with recurrent CNS tumors were consented and enrolled into the POG program prior to accrual of tumor and matched blood followed by whole-genome and transcriptome sequencing and processing through the POG bioinformatic pipeline. Sixteen patients were enrolled into POG. In each case, POG analyses identified genomic drivers including novel oncogenic fusions, aberrant pathways, and putative therapeutic targets. POG has highlighted that personalized oncology is truly a multidisciplinary field, one in which neurosurgeons must play a vital role if these programs are to succeed and benefit our patients.

Clinical cancer research : an official journal of the American Association for Cancer Research, 2019
Authors
Jones, Martin R, Williamson, Laura M, Topham, James T, Lee, Michael K C, Goytain, Angela, Ho, Julie, Denroche, Robert E, Jang, GunHo, Pleasance, Erin, Shen, Yaoquing, Karasinska, Joanna M, McGhie, John P, Gill, Sharlene, Lim, Howard J, Moore, Malcolm J, Wong, Hui-Li, Ng, Tony, Yip, Stephen, Zhang, Wei, Sadeghi, Sara, Reisle, Carolyn, Mungall, Andrew J, Mungall, Karen L, Moore, Richard A, Ma, Yussanne, Knox, Jennifer J, Gallinger, Steven, Laskin, Janessa, Marra, Marco A, Schaeffer, David F, Jones, Steven J M, Renouf, Daniel J
Publication Abstract
Gene fusions involving neuregulin 1 () have been noted in multiple cancer types and have potential therapeutic implications. Although varying results have been reported in other cancer types, the efficacy of the HER-family kinase inhibitor afatinib in the treatment of fusion-positive pancreatic ductal adenocarcinoma is not fully understood.

Annual review of genomics and human genetics, 2019
Authors
Garrison, Nanibaa' A, Hudson, Māui, Ballantyne, Leah L, Garba, Ibrahim, Martinez, Andrew, Taualii, Maile, Arbour, Laura, Caron, Nadine R, Rainie, Stephanie Carroll
Publication Abstract
Indigenous scholars are leading initiatives to improve access to genetic and genomic research and health care based on their unique cultural contexts and within sovereign-based governance models created and accepted by their peoples. In the past, Indigenous peoples' engagement with genomicresearch was hampered by a lack of standardized guidelines and institutional partnerships, resulting in group harms. This article provides a comparative analysis of research guidelines from Canada, New Zealand, Australia, and the United States that pertain to Indigenous peoples. The goals of the analysis are to identify areas that need attention, support Indigenous-led governance, and promote the development of a model research policy framework for genomic research and health care that has international relevance for Indigenous peoples.

Journal for immunotherapy of cancer, 2019
Authors
Schuelke, Matthew R, Wongthida, Phonphimon, Thompson, Jill, Kottke, Timothy, Driscoll, Christopher B, Huff, Amanda L, Shim, Kevin G, Coffey, Matt, Pulido, Jose, Evgin, Laura, Vile, Richard G
Publication Abstract
Immunotherapy has shown remarkable clinical promise in the treatment of various types of cancers. However, clinical benefits derive from a highly inflammatory mechanism of action. This presents unique challenges for use in pediatric brainstem tumors including diffuse intrinsic pontine glioma (DIPG), since treatment-related inflammation could cause catastrophic toxicity. Therefore, the goal of this study was to investigate whether inflammatory, immune-based therapies are likely to be too dangerous to pursue for the treatment of pediatric brainstem tumors.

Nature communications, 2019
Authors
Kusakabe, Manabu, Sun, Ann Chong, Tyshchenko, Kateryna, Wong, Rachel, Nanda, Aastha, Shanna, Claire, Gusscott, Samuel, Chavez, Elizabeth A, Lorzadeh, Alireza, Zhu, Alice, Hill, Ainsleigh, Hung, Stacy, Brown, Scott, Babaian, Artem, Wang, Xuehai, Holt, Robert A, Steidl, Christian, Karsan, Aly, Humphries, R Keith, Eaves, Connie J, Hirst, Martin, Weng, Andrew P
Publication Abstract
Mechanistic studies in human cancer have relied heavily on cell lines and mouse models, but are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts; however, these are hampered by variable genetic background, inability to study early events, and practical issues with availability/reproducibility. We report here an efficient, reproducible model of T-cell leukemia in which lentiviral transduction of normal human cord blood yields aggressive leukemia that appears indistinguishable from natural disease. We utilize this synthetic model to uncover a role for oncogene-induced HOXB activation which is operative in leukemia cells-of-origin and persists in established tumors where it defines a novel subset of patients distinct from other known genetic subtypes and with poor clinical outcome. We show further that anterior HOXB genes are specifically activated in human T-ALL by an epigenetic mechanism and confer growth advantage in both pre-leukemia cells and established clones.

The Journal of molecular diagnostics : JMD, 2019
Authors
Parker, Jeremy D K, Yap, Shyong Quin, Starks, Elizabeth, Slind, Jillian, Swanson, Lucas, Docking, T Roderick, Fuller, Megan, Zhou, Chen, Walker, Blair, Filipenko, Douglas, Xiong, Wei, Karimuddin, Ahmer A, Phang, P Terry, Raval, Manoj, Brown, Carl J, Karsan, Aly
Publication Abstract
Formalin fixation is the standard method for the preservation of tissue for diagnostic purposes, including pathologic review and molecular assays. However, this method is known to cause artifacts that can affect the accuracy of molecular genetic test results. We assessed the applicability of alternative fixatives to determine whether these perform significantly better on next-generation sequencing assays, and whether adequate morphology is retained for primary diagnosis, in a prospective study using a clinical-grade, laboratory-developed targeted resequencing assay. Several parameters relating to sequencing quality and variant calling were examined and quantified in tumor and normal colon epithelial tissues. We identified an alternative fixative that suppresses many formalin-related artifacts while retaining adequate morphology for pathologic review.

Microbiology resource announcements, 2019
Authors
Lin, Diana, Coombe, Lauren, Jackman, Shaun D, Gagalova, Kristina K, Warren, René L, Hammond, S Austin, Kirk, Heather, Pandoh, Pawan, Zhao, Yongjun, Moore, Richard A, Mungall, Andrew J, Ritland, Carol, Jaquish, Barry, Isabel, Nathalie, Bousquet, Jean, Jones, Steven J M, Bohlmann, Joerg, Birol, Inanc
Publication Abstract
Here, we present the complete chloroplast genome sequence of white spruce (, genotype WS77111), a coniferous tree widespread in the boreal forests of North America. This sequence contributes to genomic and phylogenetic analyses of the genus that are part of ongoing research to understand their adaptation to environmental stress.

Cell death & disease, 2019
Authors
Chern, Yi-Jye, Wong, John C T, Cheng, Grace S W, Yu, Angel, Yin, Yaling, Schaeffer, David F, Kennecke, Hagen F, Morin, Gregg, Tai, Isabella T
Publication Abstract
Therapy-refractory disease is one of the main contributors of treatment failure in cancer. In colorectal cancer (CRC), SPARC can function as a sensitizer to conventional chemotherapy by enhancing apoptosis by interfering with the activity of Bcl-2. Here, we examine a novel mechanism by which SPARC further potentiates apoptosis via its modulation of the unfolded protein response (UPR). Using mass spectrometry to identify SPARC-associated proteins, GRP78 was identified as a protein partner for SPARC in CRC. In vitro studies conducted to assess the signaling events resulting from this interaction, included induction of ER stress with tunicamycin, 5-fluorouracil (5-FU), and irinotecan (CPT-11). We found that the interaction between GRP78 and SPARC increased during exposure to 5-FU, CPT-11, and tunicamycin, resulting in an attenuation of GRP78's inhibition of apoptosis. In addition, we also show that SPARC can sensitize CRC cells to PERK/eIF2α and IRE1α/XBP-1 UPR signaling by interfering with ER stress following binding to GRP78, which leads to ER stress-associated cell death in CRC cells. In line with these findings, a lower expression of GRP78 relative to SPARC in CRC is associated with a lower IC{{sub}}50{{/sub}} for 5-FU in either sensitive or therapy-refractory CRC cells. Interestingly, this observation correlates with tissue microarray analysis of 143 human CRC, where low GRP78 to SPARC expression level was prognostic of higher survival rate (P = 0.01) in individuals with CRC. This study demonstrates that modulation of UPR signaling by SPARC promotes ER stress-associated death and potentiates apoptosis. This may be an effective strategy that can be combined with current treatment options to improve therapeutic efficacy in CRC.

Cold Spring Harbor molecular case studies, 2019
Authors
Williamson, Laura M, Steel, Michael, Grewal, Jasleen K, Thibodeau, My Lihn, Zhao, Eric Y, Loree, Jonathan M, Yang, Kevin C, Gorski, Sharon M, Mungall, Andrew J, Mungall, Karen L, Moore, Richard A, Marra, Marco A, Laskin, Janessa, Renouf, Daniel J, Schaeffer, David F, Jones, Steven J M
Publication Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) represent a minority of pancreatic neoplasms that exhibit variability in prognosis. Ongoing mutational analyses of PanNENs have found recurrent abnormalities in chromatin remodeling genes (e.g., and ), and mTOR pathway genes (e.g., , , and ), some of which have relevance to patients with related familial syndromes. Most recently, grade 3 PanNENs have been divided into two groups based on differentiation, creating a new group of well-differentiated grade 3 neuroendocrine tumors (PanNETs) that have had a limited whole-genome level characterization to date. In a patient with a metastatic well-differentiated grade 3 PanNET, our study utilized whole-genome sequencing of liver metastases for the comparative analysis and detection of single-nucleotide variants, insertions and deletions, structural variants, and copy-number variants, with their biologic relevance confirmed by RNA sequencing. We found that this tumor most notably exhibited a -disrupting fusion, showed a novel fusion, and lacked any somatic variants in , , and .
Back to top