Journal
Cell Reports
Authors
Kevin C Yang, Steve E Kalloger, John J Aird, Michael KC Lee, Christopher Rushton, Karen L Mungall, Andrew J Mungall, Dongxia Gao, Christine Chow, Jing Xu, Joanna M Karasinska, Shane Colborne, Steven JM Jones, Jörg Schrader, Ryan D Morin, Jonathan M Loree, Marco A Marra, Daniel J Renouf, Gregg B Morin, David F Schaeffer, Sharon M Gorski

Pancreatic neuroendocrine neoplasms (PNENs) are biologically and clinically heterogeneous. Here, we use a multi-omics approach to uncover the molecular factors underlying this heterogeneity. Transcriptomic analysis of 84 PNEN specimens, drawn from two cohorts, is substantiated with proteomic profiling and identifies four subgroups: Proliferative, PDX1-high, Alpha cell-like and Stromal/Mesenchymal. The Proliferative subgroup, consisting of both well- and poorly differentiated specimens, is associated with inferior overall survival probability. The PDX1-high and Alpha cell-like subgroups partially resemble previously described subtypes, and we further uncover distinctive metabolism-related features in the Alpha cell-like subgroup. The Stromal/Mesenchymal subgroup exhibits molecular characteristics of YAP1/WWTR1(TAZ) activation suggestive of Hippo signaling pathway involvement in PNENs. Whole-exome sequencing reveals subgroup-enriched mutational differences, supported by activity inference analysis, and identifies hypermorphic proto-oncogene variants in 14.3% of sequenced PNENs. Our study reveals differences in cellular signaling axes that provide potential directions for PNEN patient stratification and treatment strategies.

Back to top