Diffuse large B cell lymphoma (DLBCL) is successfully treated with combination immuno-chemotherapy, but relapse with resistant disease occurs in ~ 40% of patients. However, little is known regarding relapsed/refractory DLBCL (rrDLBCL) genetics and alternative therapies. Based on findings from other tumors, we hypothesized that RAS-MEK-ERK signaling would be upregulated in resistant tumors, potentially correlating with mutations in RAS, RAF, or associated proteins. We analyzed mutations and phospho-ERK levels in tumor samples from rrDLBCL patients. Unlike other tumor types, rrDLBCL is not mutated in any Ras or Raf family members, despite having increased expression of p-ERK. In paired biopsies comparing diagnostic and relapsed specimens, 33% of tumors gained p-ERK expression, suggesting a role in promoting survival. We did find mutations in several Ras-associating proteins, including GEFs, GAPs, and downstream effectors that could account for increased ERK activation. We further investigated mutations in one such protein, RASGRP4. In silico modeling indicated an increased interaction between H-Ras and mutant RASGRP4. In cell lines, mutant RASGRP4 increased basal p-ERK expression and lead to a growth advantage in colony forming assays when challenged with doxorubicin. Relapsed/refractory DLBCL is often associated with increased survival signals downstream of ERK, potentially corresponding with mutations in protein controlling RAS/MEK/ERK signaling.
Journal
Scientific Reports