Journal
Human Cell, 2020
Authors
Jacky K Leung, Teresa Tam, Jun Wang, Marianne D Sadar

The androgen receptor (AR) is a validated therapeutic target for prostate cancer and has been a focus for drug development for more than six decades. Currently approved therapies that inhibit AR signaling, such as enzalutamide, rely solely on targeting the AR ligand-binding domain and, therefore, have limited efficacy on prostate cancer cells that express truncated, constitutively active AR splice variants (AR-Vs). The LNCaP95 cell line is a human prostate cancer cell line that expresses both functional full-length AR and AR-V7. LNCaP95 is a heterogeneous cell population that is resistant to enzalutamide, with its proliferation dependent on transcriptionally active AR-V7. The purpose of this study was to identify a LNCaP95 clone that would be useful for evaluating therapies for their effectiveness against enzalutamide-resistant prostate cancer cells. Seven clones from the LNCaP95 cell line were isolated and characterized using morphology, in vitro growth rate, and response to ralaniten (AR N-terminal domain inhibitor) and enzalutamide (antiandrogen). In vivo growth of the clones as subcutaneous xenografts was evaluated in castrated immunodeficient mice. All of the clones maintained the expression of full-length AR and AR-V7. Cell proliferation of the clones was insensitive to androgen and enzalutamide but importantly was inhibited by ralaniten, which is consistent with AR-Vs driving the proliferation of parental LNCaP95 cells. In castrated immunodeficient animals, the growth of subcutaneous xenografts of the D3 clone was the most reproducible compared to the parental cell line and other clones. These data support that the enzalutamide-resistant LNCaP95-D3 subline may be suitable as a xenograft tumor model for preclinical drug development with improved reproducibility.

Back to top