Journal
Cancer Spectrum, 2020
Authors
Katherine Dixon, Sean Young, Yaoqing Shen,My Linh Thibodeau, Alexandra Fok, Erin Pleasance, Eric Zhao, Martin Jones, Geraldine Aubert, Linlea Armstrong, Alice Virani, Dean Regier, Karen Gelmon, Dan Renouf, Stephen Chia, Ian Bosdet, S Rod Rassekh, Rebecca J Deyell, Stephen Yip Ana Fisic, Emma Titmuss, Shirin Abadi, Steven J M Jones, Sophie Sun, Aly Karsan, Marco Marra, Janessa Laskin, Howard Lim, Kasmintan A Schrader

Inherited genetic variation has important implications for cancer screening, early diagnosis, and disease prognosis. A role for germline variation has also been described in shaping the molecular landscape, immune response, microenvironment, and treatment response of individual tumors. However, there is a lack of consensus on the handling and analysis of germline information that extends beyond known or suspected cancer susceptibility in large-scale cancer genomics initiatives. As part of the Personalized OncoGenomics program in British Columbia, we performed whole-genome and transcriptome sequencing in paired tumor and normal tissues from advanced cancer patients to characterize the molecular tumor landscape and identify putative targets for therapy. Overall, our experience supports a multidisciplinary and integrative approach to germline data management. This includes a need for broader definitions and standardized recommendations regarding primary and secondary germline findings in precision oncology. Here, we propose a framework for identifying, evaluating, and returning germline variants of potential clinical significance that may have indications for health management beyond cancer risk reduction or prevention in patients and their families.

Read our News Story for this publication.

Back to top