Lung Cancer
Authors
Carol C Cheung, Adam C Smith, Roula Albadine, Gilbert Bigras, Anna Bojarski, Christian Couture, Jean-Claude Cutz, Weei-Yuan Huang, Diana Ionescu, Doha Itani, Iyare Izevbaye, Aly Karsan, Margaret M Kelly, Joan Knoll, Keith Kwan, Michel R Nasr, Gefei Qing, Fariboz Rashid-Kolvear, Harmanjatinder S Sekhon, Alan Spatz, Tracy Stockley, Danh Tran-Thanh, Tracy Tucker, Ranjit Waghray, Hangjun Wang, Zhaolin Xu, Yasushi Yatabe, Emina E Torlakovic, Ming-Sound Tsao
Publication Abstract

Patients with non-small cell lung cancer (NSCLC) harboring ROS proto-oncogene 1 (ROS1) gene rearrangements show dramatic response to the tyrosine kinase inhibitor (TKI) crizotinib. Current best practice guidelines recommend that all advanced stage non-squamous NSCLC patients be also tested for ROS1 gene rearrangements. Several studies have suggested that ROS1 immunohistochemistry (IHC) using the D4D6 antibody may be used to screen for ROS1 fusion positive lung cancers, with assays showing high sensitivity but moderate to high specificity. A break apart fluorescence in situ hybridization (FISH) test is then used to confirm the presence of ROS1 gene rearrangement. The goal of Canadian ROS1 (CROS) study was to harmonize ROS1 laboratory developed testing (LDT) by using IHC and FISH assays to detect ROS1 rearranged lung cancers across Canadian pathology laboratories. Cell lines expressing different levels of ROS1 (high, low, none) were used to calibrate IHC protocols after which participating laboratories ran the calibrated protocols on a reference set of 24 NSCLC cases (9 ROS1 rearranged tumors and 15 ROS1 non-rearranged tumors as determined by FISH). Results were compared using a centralized readout. The stained slides were evaluated for the cellular localization of staining, intensity of staining, the presence of staining in non-tumor cells, the presence of non-specific staining (e.g. necrosis, extracellular mater, other) and the percent positive cells. H-score was also determined for each tumor. Analytical sensitivity and specificity harmonization was achieved by using low limit of detection (LOD) as either any positivity in the U118 cell line or H-score of 200 with the HCC78 cell line. An overall diagnostic sensitivity and specificity of up to 100% and 99% respectively was achieved for ROS1 IHC testing (relative to FISH) using an adjusted H-score readout on the reference cases. This study confirms that LDT ROS1 IHC assays can be highly sensitive and specific for detection of ROS1 rearrangements in NSCLC. As NSCLC can demonstrate ROS1 IHC positivity in FISH-negative cases, the degree of the specificity of the IHC assay, especially in highly sensitive protocols, is mostly dependent on the readout cut-off threshold. As ROS1 IHC is a screening assay for a rare rearrangements in NSCLC, we recommend adjustment of the readout threshold in order to balance specificity, rather than decreasing the overall analytical and diagnostic sensitivity of the protocols.

Genome Medicine
Authors
Indhu-Shree Rajan-Babu, Junran J Peng, Readman Chiu, IMAGINE Study; CAUSES Study; Chenkai Li, Arezoo Mohajeri, Egor Dolzhenko, Michael A Eberle, Inanc Birol, Jan M Friedman
Publication Abstract

Background: Screening for short tandem repeat (STR) expansions in next-generation sequencing data can enable diagnosis, optimal clinical management/treatment, and accurate genetic counseling of patients with repeat expansion disorders. We aimed to develop an efficient computational workflow for reliable detection of STR expansions in next-generation sequencing data and demonstrate its clinical utility.

Methods: We characterized the performance of eight STR analysis methods (lobSTR, HipSTR, RepeatSeq, ExpansionHunter, TREDPARSE, GangSTR, STRetch, and exSTRa) on next-generation sequencing datasets of samples with known disease-causing full-mutation STR expansions and genomes simulated to harbor repeat expansions at selected loci and optimized their sensitivity. We then used a machine learning decision tree classifier to identify an optimal combination of methods for full-mutation detection. In Burrows-Wheeler Aligner (BWA)-aligned genomes, the ensemble approach of using ExpansionHunter, STRetch, and exSTRa performed the best (precision = 82%, recall = 100%, F1-score = 90%). We applied this pipeline to screen 301 families of children with suspected genetic disorders.

Results: We identified 10 individuals with full-mutations in the AR, ATXN1, ATXN8, DMPK, FXN, or HTT disease STR locus in the analyzed families. Additional candidates identified in our analysis include two probands with borderline ATXN2 expansions between the established repeat size range for reduced-penetrance and full-penetrance full-mutation and seven individuals with FMR1 CGG repeats in the intermediate/premutation repeat size range. In 67 probands with a prior negative clinical PCR test for the FMR1, FXN, or DMPK disease STR locus, or the spinocerebellar ataxia disease STR panel, our pipeline did not falsely identify aberrant expansion. We performed clinical PCR tests on seven (out of 10) full-mutation samples identified by our pipeline and confirmed the expansion status in all, showing absolute concordance between our bioinformatics and molecular findings.

Conclusions: We have successfully demonstrated the application of a well-optimized bioinformatics pipeline that promotes the utility of genome-wide sequencing as a first-tier screening test to detect expansions of known disease STRs. Interrogating clinical next-generation sequencing data for pathogenic STR expansions using our ensemble pipeline can improve diagnostic yield and enhance clinical outcomes for patients with repeat expansion disorders.

Breast Cancer
Authors
Derrick G Lee, Johanna M Schuetz, Agnes S Lai, Igor Burstyn, Angela Brooks-Wilson, Kristan J Aronson, John J Spinelli
Publication Abstract

Purpose: Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental pollutants associated with multiple cancers, including female breast cancer. Several xenobiotic metabolism genes (XMGs), including the CYP450 family, play an important role in activating and detoxifying PAHs, and variations in the activity of the enzymes they encode can impact this process. This study aims to examine the association between XMGs and breast cancer, and to assess whether these variants modify the effects of PAH exposure on breast cancer risk.

Methods: In a case-control study in Vancouver, British Columbia, and Kingston, Ontario, 1037 breast cancer cases and 1046 controls had DNA extracted from blood or saliva and genotyped for 138 single nucleotide polymorphisms (SNPs) and tagSNPs in 27 candidate XMGs. Occupational PAH exposure was assessed using a measurement-based job-exposure matrix.

Results: An association between genetic variants and breast cancer was observed among six XMGs, including increased risk among the minor allele carriers of AKR1C3 variant rs12387 (OR 2.71, 95% CI 1.42-5.19) and AKR1C4 variant rs381267 (OR 2.50, 95% CI 1.23-5.07). Heterogeneous effects of occupational PAH exposure were observed among carriers of AKR1C3/4 variants, as well as the PTGS2 variant rs5275.

Conclusion: Our findings support an association between SNPs of XMGs and female breast cancer, including novel genetic variants that modify the toxicity of PAH exposure. These results highlight the interplay between genetic and environmental factors, which can be helpful in understanding the modifiable risks of breast cancer and its complex etiology.

Blood Advances
Authors
Malgorzata Nowicka, Laura K Hilton, Margaret Ashton-Key, Chantal E Hargreaves, Chern Lee, Russell Foxall, Matthew J Carter, Stephen A Beers, Kathleen N Potter, Christopher R Bolen, Christian Klein, Andrea Knapp, Farheen Mir, Matthew Rose-Zerilli, Cathy Burton 0, Wolfram Klapper, David W Scott, Laurie H Sehn, Umberto Vitolo, Maurizio Martelli, Marek Trneny, Christopher K Rushton, Graham W Slack, Pedro Farinha, Jonathan C Strefford, Mikkel Z Oestergaard, Ryan D Morin, Mark S Cragg
Publication Abstract

Fc γ receptor IIB (FcγRIIB) is an inhibitory molecule capable of reducing antibody immunotherapy efficacy. We hypothesized its expression could confer resistance in patients with diffuse large B-cell lymphoma (DLBCL) treated with anti-CD20 monoclonal antibody (mAb) chemoimmunotherapy, with outcomes varying depending on mAb (rituximab [R]/obinutuzumab [G]) because of different mechanisms of action. We evaluated correlates between FCGR2B messenger RNA and/or FcγRIIB protein expression and outcomes in 3 de novo DLBCL discovery cohorts treated with R plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) reported by Arthur, Schmitz, and Reddy, and R-CHOP/G-CHOP-treated patients in the GOYA trial (NCT01287741). In the discovery cohorts, higher FCGR2B expression was associated with significantly shorter progression-free survival (PFS; Arthur: hazard ratio [HR], 1.09; 95% confidence interval [CI], 1.01-1.19; P = .0360; Schmitz: HR, 1.13; 95% CI, 1.02-1.26; P = .0243). Similar results were observed in GOYA with R-CHOP (HR, 1.26; 95% CI, 1.00-1.58; P = .0455), but not G-CHOP (HR, 0.91; 95% CI, 0.69-1.20; P = .50). A nonsignificant trend that high FCGR2B expression favored G-CHOP over R-CHOP was observed (HR, 0.67; 95% CI, 0.44-1.02; P = .0622); however, low FCGR2B expression favored R-CHOP (HR, 1.58; 95% CI, 1.00-2.50; P = .0503). In Arthur and GOYA, FCGR2B expression was associated with tumor FcγRIIB expression; correlating with shorter PFS for R-CHOP (HR, 2.17; 95% CI, 1.04-4.50; P = .0378), but not G-CHOP (HR, 1.37; 95% CI, 0.66-2.87; P = .3997). This effect was independent of established prognostic biomarkers. High FcγRIIB/FCGR2B expression has prognostic value in R-treated patients with DLBCL and may confer differential responsiveness to R-CHOP/G-CHOP.

Cell Death and Differentiation
Authors
Sylvain Lefort, Amal El-Naggar, Susanna Tan, Shane Colborne, Gian Luca Negri, Davide Pellacani, Martin Hirst, Barry Gusterson, Gregg B Morin, Poul H Sorensen, Connie J Eaves
Publication Abstract

Breast cancer heterogeneity has made it challenging to identify mechanisms critical to the initial stages of their genesis in vivo. Here, we sought to interrogate the role of YB-1 in newly arising human breast cancers as well as in established cell lines. In a first series of experiments, we found that short-hairpin RNA-mediated knockdown of YB-1 in MDA-MB-231 cells blocked both their local tumour-forming and lung-colonising activity in immunodeficient mice. Conversely, upregulated expression of YB-1 enhanced the poor in vivo tumorigenicity of T47D cells. We then found that YB-1 knockdown also inhibits the initial generation in mice of invasive ductal carcinomas and ductal carcinomas in situ from freshly isolated human mammary cells transduced, respectively, with KRASG12D or myristoylated-AKT1. Interestingly, increased expression of HIF1α and G3BP1, two YB-1 translational targets and elements of a stress-adaptive programme, mirrored the levels of YB-1 in both transformed primary and established MDA-MB-231 breast cancer cells.

Urology Case Reports
Authors
Jean-Michel Lavoie, Gillian Vandekerkhove, Andrew J Murtha, Gang Wang, Alexander W Wyatt, Bernhard J Eigl
Publication Abstract

The management of metastatic urothelial cancer is rapidly evolving since immune checkpoint inhibitors were introduced. We present the case of a patient with metastatic upper tract urothelial cancer who had a complete response to durvalumab and tremelimumab. This patient then developed multiple non-invasive papillary bladder tumours. Next-generation sequencing revealed that the tumours shared ancestry with the upper tract cancer, although there were key differences, most notably the presence of a TP53 missense mutation in the upper tract disease that was absent in the bladder tumours. This illustrates an important practice point in the management of exceptional responders to checkpoint inhibitors.

BMJ Open
Authors
Margo E Pearce, Kate Jongbloed, Sherri Pooyak, Wenecwtsin M Christian, Maaxswxw Gibuu White Wolf Mary Teegee, Nadine R Caron, Victoria Thomas, Earl Henderson, David Zamar, Eric M Yoshida, Martin T Schechter, Patricia M Spittal
Publication Abstract

This study examined associations between childhood maltreatment, colonial harms and sex/drug-related risks for HIV and hepatitis C virus (HCV) infection among young Indigenous people who use drugs.

Frontiers in Oncology
Authors
Zainab A. Bazzi, Isabella T. Tai
Publication Abstract

Cyclin-dependent kinase 10 (CDK10) is a CDC2-related serine/threonine kinase involved in cellular processes including cell proliferation, transcription regulation and cell cycle regulation. CDK10 has been identified as both a candidate tumor suppressor in hepatocellular carcinoma, biliary tract cancers and gastric cancer, and a candidate oncogene in colorectal cancer (CRC). CDK10 has been shown to be specifically involved in modulating cancer cell proliferation, motility and chemosensitivity. Specifically, in CRC, it may represent a viable biomarker and target for chemoresistance. The development of therapeutics targeting CDK10 has been hindered by lack a specific small molecule inhibitor for CDK10 kinase activity, due to a lack of a high throughput screening assay. Recently, a novel CDK10 kinase activity assay has been developed, which will aid in the development of small molecule inhibitors targeting CDK10 activity. Discovery of a small molecular inhibitor for CDK10 would facilitate further exploration of its biological functions and affirm its candidacy as a therapeutic target, specifically for CRC.

Learn More

Canadian Urological Association Journal
Authors
Roderick Clark, Miran Kenk, Kristen McAlpine, Emily Thain, Kirsten M Farncombe, Colin C Pritchard, Robert Nussbaum, Alexander W Wyatt, Johann de Bono, Danny Vesprini, Yvonne Bombard, Justin Lorentz, Steven Narod, Raymond Kim, Neil Fleshner
Publication Abstract

Prostate cancer is a significant cause of cancer mortality. It has been well-established that certain germline pathogenic variants confer both an increased risk of being diagnosed with prostate cancer and dying of prostate cancer.1 There are exciting developments in both the availability of genetic testing and opportunities for improved treatment of patients. On August 19, 2020, the Princess Margaret Cancer Centre in Toronto, Ontario, hosted a virtual retreat, bringing together international experts in urology, medical oncology, radiation oncology, medical genetics, and translational research, as well as a patient representative. We are pleased to provide this manuscript as a review of those proceedings for Canadian clinicians.

Nature
Authors
Sohrab Salehi, Farhia Kabeer, Nicholas Ceglia, Mirela Andronescu, Marc J. Williams, Kieran R. Campbell, Tehmina Masud, Beixi Wang, Justina Biele, Jazmine Brimhall, David Gee, Hakwoo Lee, Jerome Ting, Allen W. Zhang, Hoa Tran, Ciara O’Flanagan, Fatemeh Dorri, Nicole Rusk, Teresa Ruiz de Algara, So Ra Lee, Brian Yu Chieh Cheng, Peter Eirew, Takako Kono, Jenifer Pham, Diljot Grewal, Daniel Lai, Richard Moore, Andrew J. Mungall, Marco A. Marra, IMAXT Consortium, Andrew McPherson, Alexandre Bouchard-Côté, Samuel Aparicio, Sohrab P. Shah
Publication Abstract

Progress in defining genomic fitness landscapes in cancer, especially those defined by copy number alterations (CNAs), has been impeded by lack of time-series single-cell sampling of polyclonal populations and temporal statistical models. Here we generated 42,000 genomes from multi-year time-series single-cell whole-genome sequencing of breast epithelium and primary triple-negative breast cancer (TNBC) patient-derived xenografts (PDXs), revealing the nature of CNA-defined clonal fitness dynamics induced by TP53 mutation and cisplatin chemotherapy. Using a new Wright-Fisher population genetics model to infer clonal fitness, we found that TP53 mutation alters the fitness landscape, reproducibly distributing fitness over a larger number of clones associated with distinct CNAs. Furthermore, in TNBC PDX models with mutated TP53, inferred fitness coefficients from CNA-based genotypes accurately forecast experimentally enforced clonal competition dynamics. Drug treatment in three long-term serially passaged TNBC PDXs resulted in cisplatin-resistant clones emerging from low-fitness phylogenetic lineages in the untreated setting. Conversely, high-fitness clones from treatment-naive controls were eradicated, signalling an inversion of the fitness landscape. Finally, upon release of drug, selection pressure dynamics were reversed, indicating a fitness cost of treatment resistance. Together, our findings define clonal fitness linked to both CNA and therapeutic resistance in polyclonal tumours.

Back to top