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ABSTRACT 

 

Advanced and metastatic tumors with complex treatment histories drive cancer mortality. Here we 

describe the POG570 cohort, a comprehensive whole genome, transcriptome and clinical dataset, 

amenable for exploration of the impacts of therapies on genomic landscapes. Prior exposure to DNA-

damaging chemotherapies, and mutations affecting DNA repair genes, including POLQ and genes 

encoding Polζ, were associated with genome-wide, therapy-induced mutagenesis. Exposure to platinum 

therapies coincided with signatures SBS31 and DSB5, and when combined with DNA synthesis inhibitors, 

signature SBS17b. Alterations in ESR1, EGFR, CTNNB1, FGFR1, VEGFA, and DPYD were consistent with 

drug resistance and sensitivity. Recurrent non-coding events were found in regulatory region hotspots of 

genes including TERT, PLEKHS1, AP2A1, and ADGRG6. Mutation burden and immune signatures 

corresponded with overall survival and response to immunotherapy. Our data offer a rich resource for 

investigation of advanced cancers and interpretation of whole genome and transcriptome sequencing in 

the context of a cancer clinic. 
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INTRODUCTION 

Application of tumor sequencing in cancer management1, and large-scale cancer genomic profiling has 

transformed our understanding of the genomic events that drive cancers2. The majority of clinical cancer 

sequencing has used panel approaches3,4, and whole exome, genome, and transcriptome profiling 

studies have often concentrated on primary tumors with limited prior therapy5,6. Despite the high 

mortality rate associated with advanced disease7, few studies describe comprehensive pan-cancer 

profiles of advanced, post treatment tumors from mixed histology patient populations8,9. Treatment 

with anti-cancer compounds can impact the tumor genomic landscape through selection for resistant 

clones and a few resistance mechanisms to targeted therapies have been described10,11. Therapies such 

as platinum-based compounds have been associated with DNA mutagenesis12–14 and specific mutational 

signatures13. Genomic features beyond gene mutations, including mutation signatures and 

transcriptome profiles, have clinical implications15,16. 

  

Here we describe analysis of 570 advanced and metastatic cancers from patients treated at a tertiary 

care center, referred to as the ‘POG570’ cohort, profiled using whole genome and transcriptome 

sequencing as part of the Personalized OncoGenomics (POG) Program at BC Cancer17–20 (NCT02155621; 

https://www.personalizedoncogenomics.org/cbioportal/). Examination of the interaction between drug 

treatment and genomic landscapes in this predominantly post-treatment population identified gene 

alterations, mutation signatures, increased mutation burden and genome instability in treated tumors. 

Results from gene expression profiles of the immune microenvironment correlated with overall survival, 

and with patient outcomes upon subsequent treatment with immune checkpoint inhibitors (ICIs). Our 

analyses reveal potential mechanisms of resistance and impacts of therapy, and illustrate the value of 

performing whole genome and transcriptome profiling on advanced cancers in a clinical context. 
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RESULTS 

POG570 cohort characteristics 

 

The cohort is composed of advanced and metastatic tumors from patients treated in a tertiary cancer 

clinic, and represents 25 histologies with biopsies from 18 organ groups. Most biopsies were taken from 

metastatic sites (n=438, 77%) while others represented local recurrences or refractory disease (Fig. 1a, 

Supplementary Table 1). Rare cancers were profiled, including eccrine porocarcinoma21, carcinoma ex 

pleomorphic adenoma22, and ghost cell odontogenic carcinoma23.  

  

Most patients (n=466, 82%) received systemic therapy prior to biopsy (Fig. 1b). 110 different drugs were 

received by patients before genomic analysis, with mean treatment duration for each drug ranging from 

four days to over four years (Extended Data Fig. 1a, Supplementary Table 2). Treatment duration 

reflected a combination of standard treatment protocol, discontinuation due to toxicity, or 

discontinuation due to disease progression. Overall, 72% of patients received more than one drug prior 

to biopsy, and drug combinations used were tumor type dependent as demonstrated by differences in 

drug co-occurrence (Fig. 1c, Extended Data Fig. 1b).  

 

Recurrent mutations and genomic alterations in advanced cancers 

 

Whole tumor and normal genome sequences were analyzed to identify somatic events. A total of 

7,441,311 somatic substitutions and 701,166 small (<20 bp) insertions or deletions were detected, with 

mutation burdens ranging from <0.1/megabase (Mb) to 159/Mb (Fig. 2a). The highest mutation loads 

were associated with microsatellite instability (MSI), or with C>T substitution patterns in melanomas and 
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skin cancers, associated with UV exposure. Deep deletions affected a median of nine genes per genome, 

and mid- to high-level amplifications affected a median of 709 genes per genome. In 4% of cases, viral or 

microbial sequences were detected, including Fusobacterium, human herpesvirus, and human 

papillomavirus (HPV). 

 

58,638 structural variants encompassing genomic regions >1 kb consisted of deletions (28%), inversions 

(24%), duplications (22%), and interchromosomal events (26%). Expressed transcripts for 2,291 events 

were detected and predicted to encode altered protein products. Ninety-five percent of samples had 

evidence for potential gene fusions, of which 31% (1,815 out of 5,831 events) were supported by RNA 

sequencing data. Sarcomas, breast, and ovarian cancers had the highest burden of potential gene 

fusions (96-100% of samples, averaging 12-17 events per sample), while colorectal and pancreatic 

cancers had lower rates of gene fusions (90-93% of samples, averaging five to eight per sample), 

consistent with results from primary cancers24,25. The most frequent therapeutically targetable driver 

fusion was EML4-ALK (Fig. 2a), observed exclusively in lung cancers (nine samples, 13%). NRG1 fusions, 

an emerging therapeutic target19, were observed in cholangiocarcinoma, lung, and pancreatic cancers. 

Targetable RET and ROS1 fusions were detected, including a ROS1-GOPC fusion in a colorectal cancer, an 

event which has not previously been described in gastrointestinal tumors26. 

 

The most frequently altered oncogenes and tumor suppressor genes included TP53, NF1, RB1, KRAS, 

CDKN2A/B, and MYC, which we note are among the most frequently altered genes in primary cancers 

from The Cancer Genome Atlas (TCGA)2 (Fig. 2a). Significantly mutated genes included KEAP1 in lung, 

SF3B1, GATA3 and SOX10 in breast, and MAPK8/JNK1 and NCOA4 in a pan-cancer analysis 

(Supplementary Table 3; see Methods). SOX10 was altered in 5 samples, two of which were triple 

negative breast cancers (TNBC) that harbored frameshift mutations with concurrent loss of SOX10 gene 
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expression. SOX10 protein expression is a proposed adjunct diagnostic marker to GATA3 for TNBC27. 

SOX10-negative TNBC tumors are associated with elevated androgen receptor (AR) protein expression28. 

Consistent with this, both SOX10 frameshift-containing TNBC samples demonstrated AR gene 

expression, supporting the relationship between these two clinical markers of TNBC and indicating 

SOX10 mutations could account for a proportion of SOX10-negative TNBCs with concurrent AR 

expression.  

 

Comparison of mutation frequencies of POG570 significantly mutated genes to primary tumors from the 

Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset revealed higher ESR1 mutation frequencies in 

advanced and metastatic breast cancers (all: 12.9% POG570 vs 1.2% PCAWG p = 3.0x10-5, ductal: 11.5% 

POG570 vs. 0.9% PCAWG p = 2.4x10-4, lobular: 37.5% POG570 vs. 0% PCAWG, p = 1.5x10-3, Chi-squared 

test, FDR adjusted), and was validated in a pan-cancer, propensity-matched cohort (p = 0.017, Chi-

squared, FDR adjusted), consistent with recent studies of advanced, pretreated tumors8,29. We observed 

a higher frequency of mutations affecting PTEN in ductal breast cancers compared to primary cancers 

(10.6% POG570 vs. 4.0% PCAWG, p = 0.09, Chi-s quared, FDR adjusted), supporting previous 

observations29. A similar elevation of PTEN mutation frequency was observed in metastatic ovarian 

serous cystadenocarcinomas (15% POG570 vs. 0% PCAWG, p value = 0.011, Chi-squared, FDR adjusted), 

consistent with results from MSK-IMPACT targeted sequencing in advanced cancers3 in comparison to 

TCGA data (MSK-IMPACT 6% vs TCGA 1%). 

 

Evaluation of copy number and single nucleotide variation revealed an increased frequency of FGFR1 

amplification (17% POG570 vs. 11% TCGA, p = 0.038, Chi-squared). Similarly, NF1 was more frequently 

altered in breast and ovarian tumors when small mutations and copy number variants were combined 

(breast: 7% POG570 vs. 3% TCGA, p = 0.013, ovarian: 21% POG570 vs 10% TCGA, p = 0.057, Chi-squared). 
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Elevated alteration frequencies of ESR1, FGFR1, and NF1 in our cohort were confirmed in MSK-IMPACT 

breast cancers (ESR1: 10%, FGFR1: 13%, NF1: 7%). Such gene alterations were previously associated with 

resistance to endocrine therapies11,30,31, which is consistent with the treatment histories of patients in 

our cohort (Fig. 1b), indicating that these events may have contributed to treatment resistance. 

 

Mutation hotspots include non-coding regulatory events 

 

Almost all known highly recurrent cancer hotspot mutations are in protein coding regions2–4. Across 

POG570, 1.1% of small mutations were observed in coding and non-coding exons, 42% in intronic and 

56% in intergenic regions. The mutation frequency in non-coding regions of the genome was, on 

average, 18% higher than in exonic regions (Extended Data Fig. 2a, p<2.2x10-16, Wilcoxon rank sum), 

although several cases that harbored mutations in transcription-coupled repair genes ERCC6, UVSSA and 

GTF2H1 did not exhibit this trend32,33. We identified 2,596 mutation clusters, of which 66.5% were in 

intergenic regions, 30.5% were in introns, and 3% were in exons (Fig. 2b, Extended Data Fig. 2b, 

Supplementary Table 4). Of the regulatory region clusters, including promoters, untranslated regions 

(UTRs) and enhancer regions, three were seen in more than 2% of patients (Fig. 2b): mutations in the 

TERT promoter, ADGRG6 enhancer, and the PLEKHS1 promoter. TERT promoter mutations are well-

studied34,35, and consistent with their oncogenic role, were associated with increased TERT expression 

(Fig. 2b,c, p=0.038). PLEKHS1 promoter mutations showed a trend towards an increased expression 

(p=0.08, Wilcoxon rank sum, FDR correction), in contrast to previous reports from primary tumours36. Six 

patients with basal cell melanoma or head and neck cancer had AP2A1 promoter mutations situated 

downstream of the transcription start site and elevated AP2A1 expression (Fig. 2b, c, p=0.038), a 

relationship that was not reported previously36. We found recurrent hotspot G>A (chr. 6: 142,706,206 

bp) and C>T (chr. 6: 142,706,209 bp) changes in ADGRG6, which were described in 26% of primary 
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bladder cancers and are proposed to promote angiogenesis37. Our findings extend the tumor types in 

which such mutations are found to include advanced breast, lung and cervical cancers.  

Tumor mutation burden, heterogeneity and survival 

Tumor mutation burden (TMB) and intratumor heterogeneity (ITH) were variable across tumor types 

(Fig. 2a, Extended Data Fig. 2c, p=0.0046). We sought to evaluate the relationship between TMB and 

ITH, and impact on patient survival. ITH was surveyed using multiple parameters (see Methods), the 

results of which were strongly concordant (Extended Data Fig. 2e, r=0.74, p<2.2x10-16), and revealed 

elevated ITH in tumors characterized by a high level of subclonality (Extended Data Fig. 2f, p=0.00011). 

The median size of subpopulations associated with driver mutations was higher than sub-populations 

associated with only non-driver mutations, indicating driver mutations were preferentially found in 

dominant subpopulations (Extended Data Fig. 2g, p=0.024, Wilcoxon rank sum). 

ITH was highest in breast, and colorectal tumors, and was low in lymphomas and melanomas, despite a 

high TMB in the latter (Fig. 2d), consistent with a recent PCAWG report (Dentro et al., 

http://biorxiv.org/lookup/doi/10.1101/312041). ITH was positively correlated with TMB (r= 0.58, 

p<2.2x10-16, Spearman correlation), possibly reflecting an increased potential for ITH facilitated by 

greater TMB. Increased TMB was associated with poorer overall survival (Fig. 2e, p=7.03x10-6), even 

when accounting for tumor type (Extended Data Fig. 2h, HR=1.52, p=0.000826), while ITH did not 

independently contribute to prognosis (Extended Data Fig. 2h, HR=1.05, p=0.68).  

Mutations and copy number alterations associated with prior therapy 

 

To study alterations potentially associated with drug resistance, we identified coding small mutations 

and copy number alterations that were more frequent in treated than untreated patients, and in 

comparison to primary tumors (see Methods). We expected to detect alterations related to therapy 

http://biorxiv.org/lookup/doi/10.1101/312041
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alignment in addition to those that may have contributed to resistance. Of 35 significant coding small 

mutations, we focused on 13 that were clustered or truncating (Fig. 3a, Supplementary Table 5), as 

these mutation patterns are often associated with oncogenic effects. This revealed drug-mutation 

associations for ESR1, EGFR, SMAD4, TP53, ARID1A, OR5H2, ANKRD12, and TCF7L2. The relevance and 

validity of our approach was supported by the observation that 3 of the 13 associations detected were 

well-known resistance mutations in aromatase inhibitor-treated breast cancers (ESR1; D538X)11 and 

EGFR inhibitor-treated lung cancers (EGFR; T790M)10, as well as treatment sensitivity mutations in EGFR 

(L858R), which are used to select patients for therapy (Fig. 3a, Extended Data Fig. 3a). Interestingly, the 

presence of ESR1 and EGFR mutations was associated with longer treatment durations prior to biopsy 

(Fig. 3c and Extended Data Fig. 3a, ESR1 p=0.0025, EGFR p =0.081). Notably, two cases with EGFR T790M 

resistance mutations that were exposed to therapy for the longest duration additionally harbored 

mutations in the β-catenin encoding gene, CTNNB1 (Extended Data Fig. 3a) (Fig. 3a). Alterations 

affecting genes in the WNT pathway have previously been reported in EGFR-mutant cancers treated 

with EGFR inhibitors10. Together, these observations suggest WNT signaling may cooperate with EGFR 

resistance mutations, thus contributing to EGFR inhibitor resistance, as previously proposed38. We 

identified 20 loci containing 153 copy number variants associated with treatment, which additionally 

correlated with gene expression changes (Fig. 3b, Supplementary Table 6). ERBB2 (HER2) amplifications 

are used as a clinical biomarker for HER2-inhibitor therapy39, and consistent with this, ERBB2 (HER2) 

amplifications on 17q were associated with HER2-inhibitor therapy (Fig. 3b). FGFR1 amplifications on 8p 

exhibited higher FGFR1 expression (p=7x10-7, Wilcoxon rank sum) and were associated with aromatase 

inhibitor treatment in breast cancer patients (Fig. 3b, p=0.022, Chi-squared). As FGFR1 amplifications are 

not used as clinical markers to select patients for therapy, these observations are consistent with a role 

for FGFR1 amplification in aromatase inhibitor resistance, as previously proposed30.  
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Expression changes associated with therapy 

 

Clustering of POG570 samples based on gene expression data revealed sample relationships compatible 

with the tissue of origin (Extended Data Fig. 3b). Treatment-associated changes in gene expression may 

reflect gene alterations used clinically to select patients for treatment, such as elevated ESR1 expression 

associated with hormonal therapy (Fig. 3d, p=8.1x10-6), or alterations that arose concomitant with 

treatment. VEGFA, a target of bevacizumab, exhibited higher expression in patients who had received 

bevacizumab than in those who had not (Fig. 3d, p=0.00058), even in patients treated for less than 90 

days. As VEGFA is not used as a marker to align patients to therapy, the rapid increase in VEGFA 

expression may represent a potential compensatory resistance mechanism, counteracting the inhibitory 

effect of bevacizumab. Expression of DPYD was lower in colorectal cancer patients treated with 5-FU, 

particularly in patients treated for more than 90 days (Fig. 3d, p=0.0084). The enzyme, DPYD, degrades 

5-FU. Reduced activity due to germline variants in DPYD predict toxicity to 5-FU40, whereas somatic loss 

may contribute to sensitivity to 5-FU, as indicated by a recent case study harboring a DPYD structural 

variant18. Reduced DPYD gene expression in patients with longer duration of 5-FU is consistent with a 

role for reduced DPYD expression in 5-FU sensitivity.  

Novel mutation signatures in advanced, pre-treated tumors  

To characterize the broader mutational landscape in POG570, de novo single base substitution (SBS), 

insertion and deletion (ID) and double base substitution (DBS) mutation signature analyses were 

performed on tumor groups with sufficient patient numbers (see Methods), and the temporal 

distribution of SBS signatures was inferred41,42 (see Methods) (Fig. 4 and Extended Data Fig. 4). Fifteen 

SBS, six DBS, and nine ID signatures matching known patterns were identified (Fig. 4a, Extended Data 
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Fig. 4)43. We identified six additional novel SBS signatures (MSBS1-MSBS6) and seven novel ID signatures 

(MID1-MID7) (Fig. 4a, Extended Data Fig. 5).   

Early arising, aging-related SBS1 and indel signatures ID1 and ID2 were observed in most tumor types 

(Fig. 4a). Tobacco-associated SBS4 and ID3 were found in lung cancers and correlated with DBS2, a 

widely observed signature also associated with exogenous mutagens including tobacco smoke (Fig. 4a,b 

and Extended Data Fig. 6). Early-arising SBS7a, attributed to UV-associated mutations, and late-arising 

SBS38 were identified in the SKCM group and were anti-correlated (Fig. 4b, Extended Data Fig. 6). SBS38 

was elevated in acral melanoma and a mucosal melanoma of the vulva that were not characterized by 

UV-associated SBS7a, indicating SBS38 may be a UV-independent, melanoma-associated signature. 

SBS3, SBS8, and ID6, associated with HRD, were observed in breast and ovarian cancers while SBS3 and 

SBS8 were also found in pancreatic and stomach cancers and sarcomas, as previously described44,45. 

APOBEC-associated SBS2, SBS13, and DBS11 signatures were found in breast cancers. HRD and APOBEC-

associated SBS signatures were observed with both early and late timing, suggesting these mutational 

processes accompany tumor evolution (Fig. 4c). Of the six novel SBS signatures (Fig. 4a and Extended 

Data Fig. 5), some resembled known signatures. The predominantly early-arising MSBS1 signature 

matched signature 1B previously found in many primary tumors46. MSBS2 had a mutation profile most 

similar to APOBEC-associated SBS2 and SBS13 (cosine similarities 0.67 and 0.63 respectively, Extended 

Data Fig. 4a), potentially implying a similar mutational mechanism. The late-arising MSBS6 was similar to 

SBS7c (cosine similarity 0.66, Extended Data Fig. 4a) and correlated with SBS7a (Spearman correlation 

0.59, Fig. 4b and Extended Data Fig. 6). The predominantly late-arising MSBS3 was most similar to SBS9 

and SBS17b (cosine similarities 0.72 and 0.69 respectively, Extended Data Fig. 4a) and was observed in 

pancreatic and stomach cancers (Fig. 4a). Interestingly, samples with MSBS3 also had exposure of SBS36 

and SBS30 (Spearman correlation 0.46, 0.32 respectively, Fig. 4b and Extended Data Fig. 6), both of 

which are associated with deficient base excision repair (BER)47,48, despite the absence of an obvious 
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mutation affecting BER in these samples. MSBS5, characterized by T to G transversions and T to C 

transitions, was detected in two samples and is of unknown origin. Of the novel indel signatures, MID1, 

identified in multiple tumor groups (Fig. 4a), exhibited large insertions and deletions (Extended Data Fig. 

5b), particularly in regions of varying microhomology length, similar to HRD-associated ID6 and 

radiation-associated ID8. These observations add to the growing literature supporting indel signatures 

as markers of mutagen exposure and DNA damaging etiologies49,50. 

 

Tumor alterations increased by DNA repair mutations and long exposure to genotoxic therapy  

Increased TMB as a result of mismatch repair (MMR) defects has been well documented51. Increased 

TMB in nucleotide excision repair- and BER-defective preclinical models has also been reported52. To 

examine the impact of DNA repair deficiencies on genomic landscapes, we surveyed 181 DNA repair and 

damage response genes representing 12 DNA damage response (DDR) pathways (Supplementary Table 

7, see Methods) and identified 357 patients with somatic mutations. The most frequently altered genes 

included TP53 (36%), ATM (2.6%), and BRCA2 (2.3%) (Extended Data Fig. 7a). Across the DDR pathways 

analyzed, TMB was consistently higher in cases with DNA repair mutations, even after excluding 

hypermutated cases (Fig. 5a, p<2.2x10-16). This observation held even when accounting for the 

relationship between overall mutation burden and mutations in a specific gene set (p=0.033, see 

Methods). Genomes with DDR mutations also exhibited increased structural instability, measured by 

HRD score, which has been associated with, but not limited, to loss of the DNA repair genes BRCA1 and 

BRCA253 (Extended Data Fig. 7b, p=7.1x10-10). Together, our data indicate that mutations affecting DDR 

pathways impact overall mutation burden and genome stability.  



13 

An estimate of the mutational toxicity of chemotherapy by assessing therapy-associated mutational 

footprints supports the notion that prior therapy significantly contributes to the overall TMB54. Excluding 

patients with DDR mutations, we found that patients treated with genotoxic chemotherapy therapy for 

more than one year exhibited a significant increase in TMB compared to those treated for less than one 

year or not treated at all (see Methods) (Fig. 5b, untreated vs >1 year p=0.00018), even after accounting 

for tumor type (untreated vs >1 year p=0.00012, linear regression). Patients undergoing long-term 

therapy prior to biopsy showed an average increase of 4,304 (2.0-fold increase) somatic mutations and 

had, on average, 32 (2.0-fold increase) more mutated genes than non-treated patients. These 

observations are similar to those reported in a large advanced pan-cancer cohort54. Interestingly, we 

also observed a trend towards increased genomic instability, as measured using the HRD score, in 

patients with prolonged exposure to genotoxic therapy (Extended Data Fig. 7c, p=0.07). Overall, our 

analyses indicate that treatment with DNA damaging agents remodels the genomic landscape of 

advanced cancers and may drive a more mutated and genomically unstable phenotype.  

In contrast to global TMB, we did not observe an increase in localized mutation showers, or kataegis6, 

with prior genotoxic therapy exposure (p=0.8, linear regression). Tumors with DDR pathway alterations 

demonstrated a lower proportion of kataegis-associated mutations (p=2.3x10-6, Wilcoxon rank sum). In 

total, 62% of cases had evidence for kataegis, the highest proportion occurring in breast cancer (n=113, 

78%) and cholangiocarcinoma (n=11, 79%), which was associated with increased APOBEC3B (p=5.3x10-

10, Wilcoxon rank sum), as previously reported55. 
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Alterations in error-prone polymerases are associated with increased mutation burden in 

patients exposed to genotoxic therapy 

 

In seeking specific alterations, particularly those affecting DDR genes, that might contribute to elevated 

TMB in patients treated with genotoxic therapy, we identified mutations in translesion synthesis 

polymerase genes. Tumors with somatic mutations affecting members of the translesion polymerase ζ 

(Polζ) complex, including REV3L and POLD3 encoded proteins, which were common in our cohort 

(Extended Data Fig. 7a), were associated with significantly increased TMB in patients previously exposed 

to genotoxic agents (Fig. 5b, p=0.0016). The Polζ complex is a low fidelity polymerase involved in error-

prone replication, bypass and repair of interstrand crosslinks such as those induced by cisplatin, and has 

been associated with mutagenesis and chemoresistance56. Similarly, mutations in POLQ, which encodes 

another low fidelity polymerase involved in error-prone microhomology-mediated end joining and BER, 

were only associated with increased TMB in tumors treated with genotoxic therapy (Fig. 5b, p=0.00066). 

These observations were robust even when accounting for tumor type (POLζ: p=0.026, POLQ: p<2x10-16, 

linear regression). Our results indicate a relationship between DNA damaging therapies and DDR 

pathways in advanced tumors, and highlight the potential mutagenic effect of genotoxic therapy in 

specific DDR-altered contexts. 

Mutation signatures associated with treatment 

 

Signatures SBS17b, SBS31, and MSBS1-MSBS6, which are late-arising or of unknown etiologies, in 

addition to ID and DBS signatures were examined for association with prior therapy. SBS31 was elevated 

in patients exposed to platinum agents (cisplatin p=3.69x10-4, carboplatin p=2.41x10-6, all platinum 

p=3.4x10-10, Wilcoxon rank sum, Holm-Bonferroni correction), as previously reported13,29,43,54, and 
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capecitabine (p=2.15x10-2) (Fig. 5c, Extended Data Fig. 7d). Our analysis expanded the number of tumor 

types associated with SBS31 to include cholangiocarcinoma, sarcoma, and breast, lung and ovarian 

cancers, with a striking signal in sarcomas, where nearly all cisplatin-treated cases demonstrated 

increased SBS31 (Extended Data Fig. 7d). Tumor samples from patients treated with platinum-based 

therapy for longer durations demonstrated increased SBS31 exposure compared to patients with 

shorter treatment duration (Fig. 5c), and remained significant after accounting for tumor type (p 

=1.53x10-13, linear regression). We also observed an association between prior exposure to platinum 

agents and DBS5 (p=5.81x10-7, Wilcoxon rank sum, Holm-Bonferroni correction). This signature, 

characterized by CT dinucleotide mutation and associated with platinum exposure49, was found in 

several tumor types, expanding previous tumor associations to include colorectal cancers and sarcomas. 

Similar to SBS31, DBS5-associated mutations were elevated in patients with long exposure to therapy 

(Fig. 5d, p=4.85x10-4, linear regression accounting for tumor type), consistent with the higher TMB we 

observed in patients that underwent prolonged genotoxic therapy (Fig. 5b).  

Given the role for homologous recombination repair in resolving platinum-associated interstrand 

crosslinks57, we investigated the relationship between HRD and platinum-associated mutation 

signatures. HRD tumors were more likely to have experienced longer durations of platinum therapy 

(HRD vs HR-proficient on platinum for > one year, p=0.033, Chi-squared), which may reflect the clinical 

benefit of platinum-based therapy for HRD tumors. Interestingly, HRD samples (see Methods) 

unexposed to platinum therapy had increased SBS31 (Fig. 5e, p=4x10-7, Wilcoxon rank sum) and SBS31 

was greater in HRD platinum-treated samples compared to platinum-treated HR-proficient samples, 

even when considering only patients with prior therapy of two months to one year (Fig. 5e, p=0.065, 

Wilcoxon rank sum, p=0.12 after accounting for tumor type, linear regression), suggesting that inherent 

DNA repair deficiency can influence therapy-associated mutagenesis. DBS5 was not elevated in HRD 

samples after accounting for tumor type (Extended Data Fig. 7e, p = 0.87, linear regression) indicating 
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DBS5 was independent of HRD status. ID6 was observed in breast and ovarian cancers, correlated with 

SBS3 and was elevated in HRD tumors, consistent with an HRD association (Extended Data Fig. 7f, 

p=2.6x10-5). Samples from patients previously exposed to platinum revealed a slight increase in ID6 after 

accounting for tumor type, even when HR-proficient (Extended Data Fig. 7f, p=0.053, linear regression). 

Together, these observations indicate that mutations associated with SBS31 and ID6 are elevated in HRD 

tumors and that SBS31 in particular is predominant in tumors also exposed to platinum therapy. In 

contrast, DBS5 appears to be solely associated with platinum therapy, and is consistent with platinum-

associated intrastrand, and to a lesser extent interstrand, crosslinks13. 

SBS17b was biased towards late timing (Fig. 4c, p=4x10-17, Wilcoxon rank sum), consistent with 

mutations arising after treatment, and was elevated in cancers exposed to platinum-based therapies (all 

platinum therapies p=4.02x10-3, Wilcoxon rank sum, Holm-Bonferroni correction), DNA synthesis 

inhibitors including capecitabine, gemcitabine, and 5-FU (p=1.33x10-6), and doxorubicin (p=2.65x10-10). 

SBS17b was recently reported to be elevated in metastatic cancer compared to primary lesions and was 

associated with prior exposure to 5-FU, taxanes, platinum-based chemotherapy, and eribulin29. As 

chemotherapy regimens with combined platinum-based compounds and DNA synthesis inhibitors are 

common across multiple cancer types (Fig. 1b, 1c and Extended Data Fig. 1), we hypothesized that 

SBS17b mutations may result from exposure to combined DNA damaging agents. Indeed, SBS17b was 

not significantly elevated in breast cancer patients treated with either DNA synthesis inhibitors or 

platinum-based therapies alone, whereas patients treated for long periods of time with both therapies 

demonstrated increased mutations attributed to SBS17b (Fig. 5f, p=0.0020). Thus, treatment with 

platinum-based therapy and DNA synthesis inhibitors may both contribute to SBS17b but combined 

therapy may have an even more significant effect on SBS17b-associated mutations. As signature 17 

(COSMIC v2) has been found in a small number of primary cancers including liver41 and breast6, our 

observation that platinum and DNA synthesis inhibitor combination therapy is associated with increased 
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SBS17b suggests that therapy-associated mutagenesis may share or mimic an underlying etiology in 

primary cancers characterized by this signature6,41.  

Radiation therapy is another potential source of therapy-associated mutations. Indel signature ID8, 

identified in breast cancer and sarcoma, was higher in samples from irradiated tumors compared to 

non-irradiated tumors (Fig. 5g, p=5x10-3, linear regression). ID8 is characterized by deletions greater 

than 5bp and is enriched for microhomology at breakpoints, proposed to arise from non-homologous 

end joining of radiation-induced double strand breaks58. 

In addition to therapy-directed mutational profiles, we also observed elevated mutation signatures 

consistent with potential therapeutic resistance. APOBEC-mediated mutagenesis is associated with 

acquired resistance to tamoxifen59. APOBEC-associated SBS2 was correlated with prior tamoxifen 

exposure, particularly for longer treatment durations, suggesting a potential selection for APOBEC-

mediated mutagenesis in response to therapy (Fig. 5h). Estrogen receptor status, as determined by a 

clinical immunohistochemistry test, was not significantly correlated with SBS2 (Extended Data Fig. 7g, 

p=0.33), indicating molecular subtype was not responsible for this association. Concomitant elevation of 

APOBEC3A expression was also observed in tumors from patients treated with tamoxifen for a longer 

duration compared to patients not treated with tamoxifen (Extended Data Fig. 7h, p=0.052), consistent 

with the hypothesis that intrinsic APOBEC-mediated mutagenesis contributes to acquired resistance to 

tamoxifen in breast cancer.  

 

Somatic second-hits and mutation signatures in patients with germline alterations  

 

We investigated 98 cancer predisposition genes identified by ACMG/AMP (Supplementary Table 7) and 

identified 84 pathogenic and likely pathogenic germline variants in 13.5% of cases, spanning 17 cancer 
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types and 27 cancer predisposition genes (See Methods, Fig. 6a). This frequency is comparable to 

prevalence estimates of 12.2-17.8% in similar advanced cancer cohorts9,60. Although 90% of the variants 

were SNVs and small indels, we also identified eight large copy number and structural variants (Fig. 6b 

and Extended Data Fig. 8a), including a complex rearrangement at the NTHL1 and TSC2 loci61. 

39% of cases harboring pathogenic or likely pathogenic germline variants had a second event consistent 

with a classic two-hit model of tumorigenesis in which both copies of a tumor suppressor gene are 

affected (Fig. 6c). Secondary somatic alterations occurred most often in BRCA2, BRCA1, ATM, and CHEK2 

(Fig. 6c), primarily through loss of heterozygosity (LOH) (Fig. 6d). Many germline variants in tumor 

suppressor genes were associated with low tumor expression (40% below the 25th percentile across the 

POG570 cohort), while two of three oncogenic MITF variants were associated with high tumor 

expression (above the 75th percentile) (Extended Data Fig. 8b).  

Several somatic mutational processes were associated with the presence of pathogenic and likely 

pathogenic germline variants. A strong presence of signature SBS30 was observed in one highly mutated 

case (Extended Data Fig. 8c) with deleterious germline alterations in the NTHL1 and TSC2 genes61. In 

addition, SBS18 predominated in one case with bi-allelic germline MUTYH variants62 but not in 

heterozygous MUTYH carriers (Extended Data Fig. 8c). Cases with both germline and somatic defects in 

BRCA1/2 had higher SBS3 exposure compared to those with only one or the other (Fig. 6e, p=1x10-5). 

HRD was increased in the presence of either germline or somatic BRCA1/2 alterations (Fig. 6f, Extended 

Data Fig. 8c, p=7x10-23). Thus, the germline background was relevant to tumor alterations, expression 

patterns, and mutation signatures.  

Immune landscapes of advanced cancers are diverse and predict survival 
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To profile the immune microenvironment, we determined expression signatures of immune cells (see 

Methods). Consensus clustering of these signatures identified eight clusters (Fig. 7a), independent of 

biopsy site, tumor content, and prior treatment. Clusters included those characterized by CD8+ T cells 

(cluster 3), both B and T cells (cluster 5), and neutrophil signatures (cluster 7). Notably, these clusters 

were independent of tumor type (Extended Data Fig. 9a), emphasizing the importance of the immune 

landscape in the understanding of advanced cancers.  

 

Overall survival of patients varied by immune cluster (Fig. 7b, p=0.00011), with cluster 5 exhibiting the 

highest overall survival, even after accounting for tumor type and tumor content (Extended Data Fig. 9b, 

HR=0.4, p=0.001). Analysis of immune clusters in TCGA63 did not reveal a similar lymphocyte-enriched 

cluster, suggesting that features of this cluster may be enriched in advanced tumors, or at metastatic 

sites. Presence of B cells in the microenvironment has been associated with improved prognosis in 

several cancer types64,65, however we did not observe a difference in survival when stratifying patients 

by B cell signatures alone. The combination of immune signatures in cluster 5 may indicate the presence 

of tertiary lymphoid structures, which could contribute to the improved prognosis in these patients65. 

 

Several clusters exhibiting higher levels of macrophage-associated, monocyte, and neutrophil expression 

(clusters 1,7,8) were associated with poorer survival. These clusters are similar to the ‘lymphocyte-

depleted’ subgroup in primary tumors, similarly described as having poor long-term survival63. Our data 

thus indicate that the immune composition of metastatic tumors shares some features with primary 

tumors. 

 

We mined transcriptome data for T cell receptor (TCR) sequences (see Methods) in tumor samples, 

identifying 10,732 unique TCR β locus (TRB) sequences, and computed dominance and diversity for each 
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sample's repertoire (see Methods). TCR diversity was positively associated with T cell expression 

signatures (r = 0.76, p=2x10-16, Spearman) and T cell-enriched cluster 3 (p=2x10-5, Spearman), 

presumably because the elevated presence of T cells resulted in increased reads aligning to the TCR 

region, and was negatively correlated with the presence of a dominant clonotype (Fig. 7c) (r = -0.46, 

p=2x10-16). The most commonly observed CDR3β clonotype sequence, CSARESTSDPKNEQFF, was 

detected in fourteen samples (3%), and was highly dominant in two (Extended Data Fig. 9c). We did not 

detect a shared alteration among these samples, suggesting another source of shared tumor-associated 

antigen may be associated with expansion of this TCR clone.  

Immune and genome landscapes interact to predict ICI response 

 

Immune checkpoint inhibitors (ICIs) have become transformative therapies of relevance in tumor types 

with high mutation loads and MSI. Biomarkers of response in addition to MSI are still being developed66. 

We examined the interaction between tumor genomes and immune microenvironments in predicting 

response to ICIs. In 76 patients from the POG570 cohort treated with ICIs after biopsy (ICI cohort) 

(Extended Data Fig. 9d), high exonic TMB was associated with longer treatment duration (Extended Data 

Fig. 9e, p=0.028) indicative of improved prognosis. Similarly, high T cell signatures were associated with 

prolonged ICI therapy (Extended Data Fig. 9e, p=0.0094), as was TCR diversity (p=0.008, Log rank test), 

reflecting the relationship between diversity and T cell signatures. Notably, coding mutation burden and 

T cell scores were poorly correlated (r=0.07, p=0.103, Pearson), and we hypothesized that combining 

these markers could more effectively predict response. Indeed, we observed that patients with both 

high exonic TMB and high T cell signatures had the longest duration of ICI therapy (Fig. 7d, p=0.0055), 

even after accounting for tumor type (HR=0.18, p=0.037, Cox proportional hazards). This was in contrast 

to patients with low mutation burden and T cell signatures who had the shortest duration of ICI therapy. 

The combined predictive value of mutation burden and T cell signatures are consistent with a recent 
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large study of pembrolizumab in clinical trials15, demonstrating that these associations also hold in a 

heavily treated pan-cancer cohort, unselected for PD-L1.  

 

DISCUSSION 

 

We leveraged our uniquely comprehensive pan-cancer whole genome, transcriptome and clinical 

dataset to explore the impacts of prior therapy on the genomic landscapes of advanced cancer patients. 

As our capacity to sequence human tumors grows, it will be of increasing importance to also 

comprehensively capture treatment and clinical data if we are to fully understand the treatment-

associated evolution of advanced cancers and the clinical implications thereof. 

 

Advanced tumors showed evidence for variants that may have contributed to therapy resistance, in 

agreement with another recent advanced pan-cancer analysis8, and revealed therapy-induced 

mutagenesis across multiple cancer types. Long-term exposure to therapies such as cisplatin resulted in 

increased tumor mutation burden (TMB), and signatures SBS31, and DBS513,49. DNA damage response 

(DDR) deficiency, including homologous recombination deficiency (HRD), was associated with elevated 

TMB and patients with HRD tumors were more likely to remain on platinum therapy for longer 

durations16 suggesting the combined effect of prolonged platinum exposure, in addition to the 

underlying accumulation of mutations associated with HRD, may particularly elevate TMB in a subset of 

relapsed patients. The notion of a general role for the interaction of DDR-deficiency and therapy-

associated mutagenesis in shaping tumor evolution is supported by observations of a recurrent 

glioblastoma subtype, characterized by temozolomide-induced hypermutation associated with MGMT 

promoter methylation67. Our findings that mutations in low fidelity DNA polymerases were only 
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associated with increased TMB when present in tumors with prior exposure to genotoxic agents suggest 

alterations in DDR-proficiency and DNA-damaging treatments can also synergistically enhance mutation 

burden in advanced, treatment-resistant human tumors.  

Evidence in our cohort for increased TMB related to DDR and therapy implies that increased therapy-

associated mutagenesis may lead to enhanced sensitivity to immunotherapy. Clinical trials to examine 

the combination of chemotherapy with immunotherapy are underway68. Additionally, immune 

expression signature clusters have implications for patient survival, independent of tumor type and 

biopsy site, and combined TMB and T cell expression signatures predict response to ICIs. These findings 

can be used to inform future trial design and aid therapeutic decision-making in patients. 

Our findings demonstrate that specific therapeutic combinations can also induce mutations associated 

with distinct signatures. SBS17b has recently been proposed to be elevated in response to therapy, but 

overlap in therapies prohibited elucidation of the causative agent29. Dissection of our breast cancer 

cases to examine specific drug combinations revealed an important role for contribution from both DNA 

synthesis inhibitors and platinum-based therapies in the elevation of SBS17b. Our results indicate that 

combination therapy-associated mutagenesis characterized by SBS17b either shares or mimics an 

underlying etiology found in primary cancers exhibiting this signature43. Considering the mechanism of 

action of these drugs, one hypothesis is that SBS17b results from replication stress that may be inherent 

to tumors, consistent with its presence in primary untreated samples, and also induced by therapy in 

advanced cancers. Our evaluation of mutation signatures has provided further insight into the 

mechanisms that drive mutagenesis in human cancers, including evidence that melanoma-associated 

SBS38 is not a result of indirect UV damage as previously proposed, and suggests several directions in 

which longitudinal studies could further examine mechanisms and specific drug-gene interactions.  
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We identified treatment-associated genomic and gene expression alterations that may play a role in 

treatment resistance, including in FGFR1, CTNNB1, EGFR, and VEGFA. Potential therapy sensitivity 

associated with reduced DPYD expression, combined with recent evidence that somatic DPYD loss-of-

function can be associated with a prolonged response18, suggests that somatic mutations or deletions in 

DPYD may be useful biomarkers for selecting patients for treatment with 5-FU. The emergence of 

resistance alterations, combined with significant changes in mutation burden, highlights the relevance 

of using advanced or metastatic tumor samples, rather than solely primary samples at diagnosis, for 

clinical genetic testing and personalized therapy17. 

In addition to contributing to fundamental research insights, the results from this study have informed 

clinical patient management, including selection of patients for immunotherapy, use of genome 

signatures for predicting drug sensitivity16, transcriptome-based changes in diagnosis69, and 

identification of drug targets including fusions and overexpressed genes17–20. As further large-scale 

efforts move towards sequencing of pre-treated and metastatic disease3,8,58, the availability of our rich 

dataset serves as a foundation for understanding the genomic landscape and treatment impacts in 

advanced tumors, and brings whole genome and transcriptome sequencing closer to the cancer clinic. 
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FIGURE LEGENDS 

Fig. 1: POG570 cohort description.  

a, Disease types and associated biopsy sites. Width of joining lines reflects the number of patients with 

the corresponding tumor type and biopsy site. Tumor-biopsy pairings are only shown if there are three 

or more patients in the pairing. n = number of samples of that tumor type or biopsy site. b, Frequency of 

drug usage for the cohort (n=570 patients) by tumor type (top), proportion of patients in each tumor 

type treated with each therapy (indicated by color on heatmap), number of patients given each therapy 

(right), and distribution of number of days between first and last dose of treatment (far right). The 20 

most frequently administered cancer drugs are displayed. Boxplots represent the median, upper and 

lower quartiles of the distribution, and whiskers represent the limits of the distribution (1.5 * 

interquartile range). The central line on the violin plots in b represent the median and the tips extend to 

the minimum and maximum values of the distribution. c, Drug co-occurrences by patient in breast 

(BRCA, top) and colorectal (COLO, bottom) cancer patients; darker circles indicate drugs used more 

frequently, and darker lines show drugs frequently used in combination. Disease cohorts: BRCA, breast 

cancer; COLO, colorectal cancer; LUNG, lung cancer; SARC, sarcoma; PANC, pancreatic cancer; OV, 

ovarian cancer; CNS-PNS, nervous system tumors; CHOL, cholangiocarcinoma; SKCM, melanoma; SECR, 

tumors of secretory organs; LYMP, blood and lymphoid cancers; STAD, stomach cancer; UCEC, uterine 
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cancers. Biopsy sites: Liver, liver; Lymph, lymph node or blood samples; Resp, respiratory system; 

ChWall, chest wall; SoftTis, soft tissue; Abdom, abdominal; Breast, breast; Repro, reproductive system; 

Brain, brain; H&N, head and neck. 

Fig. 2: Tumor genomic landscape and frequent alterations.  

a, Genomic alterations across tumor types. Somatic total mutation load is shown on a log scale of small 

mutations per genome. The mutation substitutions show the proportion of specific base changes in SNV 

and small indel events. Alterations in the 25 most frequently altered oncogenes (red, left) and tumor 

suppressors (blue, left) are shown as defined by OncoKB (see Methods); only one representative gene is 

shown when frequent co-amplification occurs. Bar plots on the right-hand side display the frequency of 

hits in that gene across the whole cohort. HRD, homologous recombination deficiency16; MSI, 

microsatellite instability as calculated by MSIsensor (see Methods); HHV, human herpesvirus; HPV, 

human papillomavirus. b, Recurrent mutation clusters; those seen in at least five patients are shown 

(n=2596 clusters). The significance of each cluster was calculated using a binomial distribution as 

described in the Methods, and was multiple test corrected using the false discovery method. c, 

Association of non-coding clusters in regulatory regions of TERT and AP2A1 with gene expression (log 

TPM). P values shown are calculated by a two-sided Wilcoxon rank sum with multiple test correction 

using the false discovery rate method. Boxplots in c represent the median, upper and lower quartiles of 

the distribution, and whiskers represent the limits of the distribution (1.5 * interquartile range). d, 

Tumor heterogeneity, measured as the Shannon diversity index of subpopulations determined by 

EXPANDS (see Methods), and median number of somatic SNVs (Spearman correlation). e, Kaplan-Meier 

survival from advanced disease diagnosis across the cohort split on the median genomic tumor mutation 

burden (TMB, 6237 mutations). The P value was determined by comparison of samples above (n=285 

patients) and below (n=285 patients) the median using a two-sided log rank test.  
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Fig. 3: Treatment-associated recurrent alterations. 

a, Drug-mutation associations, where the drug association score is the -log(P value) of the co-occurrence 

of a drug with a mutation, ‘clustered’ refers to more than one mutation within 9 bp which may indicate 

activating mutations, and ‘truncated’ refers to mutations that are predicted to result in a truncated 

protein and loss of function. No non-coding alterations showed association with therapy. b, Drug-copy 

change associations, where the drug association score is the -log(P value) of the co-occurrence of a drug 

with a copy change, and expression is compared between amplified and non-amplified samples for the 

most significant gene in the genomic region; genes are grouped by chromosomal band. P values for 

drug-alteration associations shown in a-b were calculated using Chi square statistics with multiple test 

correction (see Methods). c, Time on treatment for patients with mutations in ESR1 (BRCA samples) and 

EGFR (LUNG samples). d, Expression of drug targets (TPM) and time on treatment for ESR1 (fulvestrant 

and tamoxifen, in BRCA samples), VEGFA (bevacizumab, in COLO samples) and DPYD (5-FU, in COLO 

samples). P values in c and d were calculated by two-sided Wilcoxon rank sum tests. Drugs are grouped 

as in Supplementary Table 2. Boxplots in c and d represent the median, upper and lower quartiles of the 

distribution, and whiskers represent the limits of the distribution (1.5 * interquartile range). Sample 

sizes used for statistical tests in a and b are as described in Fig.1a for individual tumor types and are as 

follows: BRCA, n=144; COLO, n=87; LUNG, n=67; PANC, n=42; OV, n=28; n=number of patients. 

Fig. 4: Novel mutation signatures are identified in metastatic tumors. 

a, De novo mutation signatures (SBS, ID and DBS) deciphered from 482 POG570 advanced cancer 

samples reflect COSMIC signatures43 and additional novel signatures with no COSMIC match. b, 

Representative network of selected pairwise Spearman correlations between exposures of signatures, 

with proposed etiology. Only samples with both signatures detected (as demonstrated in a) were 

included in calculation of each paired correlation (edge). Correlations displayed have a minimum 



34 

correlation of 0.3. Negative correlations are indicated by a dashed line. c, Mean timing of mutations 

associated with each signature by tumor type, for samples with at least 10% of mutations that could be 

timed. SBS, single base signature; ID, indel, insertion and deletion signature; DBS, double base signature. 

Sample sizes for each edge in b are: DBS2-ID3, n=26; ID3-SBS4, n=64; DBS2-SBS4, n=26; SBS13-SBS2, 

n=144; MSBS6-SBS7a, n=12; SBS7a-SBS38, n=13; SBS30-SBS36, n=42; SBS36-MSBS3, n=42; MSBS3-SBS30, 

n=42; SBS17b-SBS31, n=144; SBS31-SBS3, n=233; SBS31-DBS5, n=127; DBS5-SBS3, n=123; SBS3-ID6, 

n=171; ID6-SBS17b, n=143; SBS3-SBS17b, n=231; n=number of patients with both signatures. 

Fig. 5: Prior therapy shapes the tumor genomic landscape.  

a, Tumor mutation burden (TMB) in tumors with somatic mutations in genes in DNA repair pathway 

mutations. The P value was calculated by an Anova test. b, TMB and duration of prior treatment with 

genotoxic agents in tumors with no DNA repair mutations and in tumors with somatic mutations in the 

translesion polymerases, POLQ and genes encoding Polζ (including REV3L and POLD3). c-d, Exposure to 

signatures SBS31 (c) and DBS5 (d) in tumors with prior platinum therapy, median days = 111 and 114 

respectively. e, Exposure of signature SBS31 and prior therapy (treated for two months to one year) and 

HRD (homologous recombination deficiency) status. Samples were defined as HR deficient if they had a 

somatic or germline variant in an HR gene (Supplementary Table 7) and exhibited an HRD score > 35, 

corresponding to the 70th percentile of this cohort. f, Exposure of signature SBS17b and status of prior 

therapy with platinum agents (cis-, carbo- or oxaliplatin) and DNA-synthesis inhibitors (cape-, 

gemcitabine or 5-FU) in BRCA tumors. Long and short treatments are split on the median time of 

platinum agents (71 days). g, Exposure of signature ID8 and prior radiation status for all samples. h, 

Exposure of SBS2 and prior tamoxifen therapy in BRCA tumors. P values in b-h are calculated by two-

sided Wilcoxon rank sum tests. Boxplots in a-h represent the median, upper and lower quartiles of the 

distribution, and whiskers represent the limits of the distribution (1.5 * interquartile range).  
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Fig. 6: Germline alterations and effects on the genomic landscape. 

a, Proportion of cases within each tumor type with high- and moderate-penetrance pathogenic germline 

variants in 98 cancer predisposition genes (Supplementary Table 7). b, Cancer predisposition genes 

(n=27) with pathogenic germline variants detected in this cohort, including small mutations, copy 

number variants (CNVs), and structural variants (SVs). c, Number of carriers and second hits for the 27 

genes with pathogenic germline variants detected in this cohort, including bi-allelic germline variants, 

loss of heterozygosity (LOH, both deletion and copy neutral), somatic mutations, and low tumor 

expression (see Methods). Larger dots indicate more genes at the same position. d, Proportions and 

types of germline variants (inner circle) and second hits (outer ring) in the four cancer predisposition 

genes from c most frequently altered with second hits. e-f Exposure of SBS3 (e) and HRD score (f) in 

cases based on BRCA1/2 germline and somatic mutation status. The central line on the violin plots in e-f 

represent the median, the top and bottom of the coloured box represent the upper and lower quartiles 

and the tips extend to the minimum and maximum values of the distribution. P values for e-f were 

calculated using Dunn’s test on Kruskal-Wallis multiple comparison. P values were adjusted using the 

Benjamini-Hochberg method. 

 

Fig. 7: Immune landscapes of metastatic cancers. 

a, Clustering of samples by composition of immune cell expression signatures (see Methods). b, Overall 

patient survival (n=568) based on immune clusters described in a. n values for each cluster are defined 

in the table below, and the P value was determined using a two-sided log-rank test. c, Relationship 

between T cell receptor diversity and dominance (see Methods, r and P determined using a Spearman 

correlation) in 372 non-lymphoid samples with at least 20 reads aligned to the TRB region; inset circles 
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indicate examples of V/J gene usage in samples with high (1), moderate (2), and low (3) dominance. The 

shaded region around the trend line represents the standard error, with a confidence interval of 0.95. d, 

Probability of continued therapy for patients receiving immune checkpoint inhibitors after the biopsy 

after exclusion of lymphoid-related tumors (n=57, see Methods), stratified by T cell signature and exonic 

TMB. Kaplan-Meier statistical significance was calculated using a two-sided log rank test. 

METHODS 

Ethical oversight, consent and enrollment 

This work was approved by and conducted under the University of British Columbia – BC Cancer 

Research Ethics Board (H12-00137, H14-00681), and approved by the institutional review board. The 

POG program is registered under clinical trial number NCT02155621. Patients residing in the province of 

British Columbia were referred to the POG program by their treating oncologist and were selected for 

functional status, available treatment options, and ability to undergo biopsy procedures. Selected 

patients were approached for study participation by a POG trained oncologist or study nurse.  

The assembled cohort was comprised of 878 adult patients who gave informed consent and enrolled in 

the POG trial between July 2012 and August 2017. For enrollment and sample exclusion criteria, see the 

Supplementary Note. Complete high quality comprehensive clinical tumor profiles were generated for 

570 patients, who were included in the POG570 cohort (Details in Supplementary Table 1). The patients 

were 359 (63%) female, 211 male (37%), with a median age of 59 years (range: 19–86). 

Clinical data collection and processing 

Treatments related to patients' cancer diagnosis were systematically abstracted from the BC Cancer 

Pharmacy database. This database captures all approved cancer therapies administered in regional 

cancer centers, community hospitals, or taken at home in BC and therefore captures the vast majority of 
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treatments delivered. Additional treatments were identified using patients’ charts where available. 

Information collected included the type of systemic therapy delivered and the duration of treatment, 

including all lines of therapies. All analyses related to therapy exposure were performed only on 

therapies received prior to biopsy, unless specifically stated otherwise. Date of advanced disease 

diagnosis was defined as the date of incurable, advanced or metastatic disease determined by radiology 

or by overt clinical finding, whichever was earlier, if progression was documented with subsequent 

imaging. Kaplan-Meier survival analysis was performed from the date of advanced disease diagnosis to 

the date of death or censoring as of January 2019 using the R packages survival (v2.42.3) and survminer 

(v0.4.2). Differences in non-parametric survival functions were assessed across subgroups using log-rank 

tests. Survival analysis was further reviewed using cox proportional hazards models to ensure there 

were no competing risk factors from observable patient characteristics, including tumor type, which are 

shown in extended data figures where relevant. 

Tissue collection and library construction 

Tumor specimens were collected from biopsies or resections, pathology reviewed, and nucleic acids 

extracted as described in the Supplementary Note. Constitutional DNA representing normal cells was 

extracted from peripheral blood. PCR-free DNA libraries and either strand-specific or ribodepleted RNA 

libraries were constructed as described in the Supplementary Note.  

Whole genome and transcriptome sequencing 

Tumor genomes were sequenced to a target depth of 80X coverage and normal peripheral blood 

samples to 40X coverage (see Supplementary Table 8 for coverage by sample) on Illumina (San Diego, 

California) HiSeq 2500 using V3 or V4 chemistry and paired-end 125 base reads, or on HiSeqX using v2.5 

chemistry and paired-end 150 base reads. Transcriptomes were sequenced targeting 150-200 million 75-

base paired end reads on Illumina HiSeq2500, or on NextSeq500 using v2 chemistry.  
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Discovery of somatic alterations  

Sequence reads from normal and tumor whole genome libraries were analyzed to identify somatic single 

nucleotide variants (SNVs), insertions and deletions (indels), copy number variants, loss of 

heterozygosity, and structural variants (SVs), as described in the Supplementary Note. Structural 

variants in either RNA or DNA considered to represent putative fusion genes were defined as events 

with breakpoints in two different protein-coding genes which were predicted to affect the sequence of 

the expected protein product70. Events were defined as having evidence in both DNA and RNA if the 

same gene pair was predicted in both. Tumor suppressors and oncogenes were defined using OncoKB 

annotations71. Total genomic tumor mutation burden (TMB) was the total number of SNVs and indels 

per sample; exonic TMB was the total number of SNVs and indels annotated as overlapping or affecting 

protein coding regions. 

Gene expression profiling 

RNA-Seq reads were aligned using STAR72 (v2.5.2b) and expression was quantified using RSEM73 (v1.3.0) 

as transcripts per million (TPM) to minimize computational batch effects between POG570 RNA-seq 

samples and over 20,000 recomputed and publicly available RNA-seq samples in Xena Public Data Hubs 

(https://xena.ucsc.edu/public-hubs/). All required input indexed files for STAR and RSEM were 

generated from the hg38 reference genome 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/), and gene annotations were based on 

Ensembl version 8574. 

Microsatellite instability, homologous recombination deficiency (HRD), and microbial 

detection 

MSI scores determined using MSIsensor75 (v0.2) from genome alignments were computed as the 

percentage of total sites displaying MSI. HRD scores were computed using the R package HRDtools16 

https://xena.ucsc.edu/public-hubs/
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/
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(v0.0.0.9) as the arithmetic sum of loss of heterozygosity (LOH), telomeric-allelic imbalance (TAI), and 

large-scale state transitions (LST) scores, determined based on published guidelines76. Microbial 

detection was performed using BioBloomTools77 (v2.0.11b; https://github.com/bcgsc/biobloom), which 

compared tumor and normal sequences to reference viral, bacterial and fungal sequences. Candidate 

positive microbial matches were evaluated by manual review. 

Significantly mutated genes and primary tumor comparison 

Significantly mutated genes were identified using MutSig2CV78 v3.11, using default parameters and a 

genome-wide coverage file, based on variants annotated using vcf2maf v1.6.6 

(https://github.com/mskcc/vcf2maf) with Ensembl version 83. Significantly mutated genes were 

computed for (1) the entire POG570 cohort and (2) each of the six largest tumor types (BRCA, COLO, 

LUNG, SARC, PANC, OV). Results were filtered to identify genes with q<=0.1. Significant genes were also 

computed for the entire cohort excluding hypermutated cases with >10 mutations/Mb, to provide 

insight into genes which appeared significant due to frequent mutation in hypermutated cases, including 

genes with multiple polynucleotide repeats.  

PanCancer Analysis of Whole Genomes (PCAWG) consensus SNV, MNV and indel calls were obtained 

through https://dcc.icgc.org/pcawg and annotated with the same approach. For each significantly 

mutated gene in POG570, we queried whether that gene was mutated more frequently in POG570 than 

in primary tumors from PCAWG by: (1) grouping PCAWG and POG570 by tumor subtype, considering 

those subtypes with at least 10 samples in each cohort and (2) propensity matching based on tumor 

type, age and gender using R packages MatchIt v3.0.2 and cobalt v3.9.0 to create matched PCAWG and 

POG570 cohorts. All pediatric, recurrent and metastatic samples from PCAWG were excluded in this 

analysis. 

https://github.com/bcgsc/biobloom
https://dcc.icgc.org/pcawg
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Mutation positional clustering 

All SNVs in the POG570 cohort residing within 50 bp of one another were grouped into clusters using the 

R package ClusteredMutations (v1.0.1, https://cran.r-project.org/web/packages/ClusteredMutations/), 

with subsequent filtering to remove potential germline artefacts and identification of events in >5 

patients as described in the Supplementary Note. The significance of each cluster was calculated using a 

binomial distribution as previously described36, with multiple test correction using the false discovery 

rate method79. Positional clusters were verified using an alternative sliding window approach. 

Intermutational distances were calculated for all mutations in each patient and kataegis events were 

identified using the definition generated through a computational model by Alexandrov et al.80, as 

described in the Supplementary Note. Kataegis mutational burden for each patient was calculated as: 

                          
                                      

                         
 

Gene promoter regions were defined as 1500 bp upstream to 500 bp downstream of all transcription 

start sites using Ensembl (v69) gene models. Enhancers were defined using GeneHancer81, only 

considering “double elite” enhancers. 5’UTR and 3’UTR regions were defined by Ensembl (v69). 

microRNA (miRNA) binding sites were defined as the conserved miRNA families binding site predictions 

available in the TargetScan database82 (v7.2). For clusters in regulatory regions of genes with expression 

data, expression p-values were calculated using an unpaired two-samples Wilcoxon test on TPM values, 

with multiple test correction using the false discovery rate method. 

Tumor subpopulation analysis 

SNVs and copy number alterations were used to predict the presence of sub-populations in each sample 

with EXPANDS83 (v2.1.1) (Extended Data Figs. 2d-e), as described in the Supplementary Note. The 

https://cran.r-project.org/web/packages/ClusteredMutations/
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Shannon index was calculated as a measure of tumor genome heterogeneity using the R vegan package 

(v2.5.3, https://cran.r-project.org/web/packages/vegan/index.html).  

As an alternative method of evaluating heterogeneity, the cancer cell fraction (CCF) of SNVs (Extended 

Data Fig. 2 c and f) was calculated for samples with at least 2000 somatic SNVs as follows: 

      
       

                    
 

 

     
   

                
 

 

 

For analysis, subclonal mutations were defined as those with a CCF of 0.2 or less, and samples were 

defined as having a high proportion of subclonal mutations if 20% or more of all mutations were 

subclonal.  

To examine the subpopulation frequency of driver gene mutations, high or moderate impact variants 

(SNPeff annotation) in genes in The Cancer Genome Atlas (TCGA) driver gene list2 which were mutated in 

at least 3 cases within a POG570 tumor type were considered.  

Gene alterations associated with therapy 

To identify small mutations (< 20 bp) and copy number changes with increased prevalence in patients 

that had received treatments, we used an occurrence measurement and filtered by increased 

prevalence of gene mutations compared to untreated TCGA primary tumors from the TCGA PanCan 

cohort2 (https://gdc.cancer.gov/about-data/publications/pancanatlas, version v0.2.8.PUBLIC) as 

described in the Supplementary Note (see Supplementary Table 9 for barcodes). Associations between 

genetic alterations and treatments were determined using chi square statistics with multiple test 

correction. 

https://cran.r-project.org/web/packages/vegan/index.html
https://www.zotero.org/google-docs/?r058I1
https://gdc.cancer.gov/about-data/publications/pancanatlas
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For mutations, genes with treatment associations and a fold change greater than 1 were then selected 

for those with mutational hotspots (multiple mutations within 9 bp) providing evidence for gain of 

function, or a minimum of two truncating mutations providing evidence for loss of function. For copy 

changes, genes with associations and a fold change greater than 1 were then examined for differential 

expression. Differential expression was calculated between groups of patients with or without the copy 

number alteration, overall and specifically within the treated group, using an unpaired two-tailed 

Wilcoxon test with multiple test correction using the false discovery rate method. Only genes with a 

difference in means in the anticipated direction (positive for amplifications, negative for deletions) were 

considered in the analysis. Genes were then grouped by chromosomal band. Regions producing non-

coding transcripts were defined using Ensembl 69 biotype84. The most frequent non-coding alterations 

were also included in analysis of treatment associations, with no significant findings. 

Gene expression clustering and association with therapy 

 

t-SNE (t- Distributed Stochastic Neighbour Embedding) decomposition plots were generated using TPM 

values and default parameters from the scikit-learn85 package in Python, with min-max scaling per 

sample (rescaling to a range of 0-1). For each pair of cancer types in TCGA, pairwise-ANOVA was used to 

determine the highest discriminating genes between the two cancer types (p<0.05); the aggregated set 

of 1559 genes were used as input to the decomposition.  

 

We assessed the impact of drugs on gene expression for 45 literature-informed combinations of drug, 

gene and disease. We considered three groups of patients for each cancer type: (1) those who never 

received the drug, (2) those that were on treatment for less than 90 days, and (3) those who were on 

treatment for more than 90 days prior to biopsy. Patients were excluded if days on treatment was <14 
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days, or if PLACEBO was included in the drug name. If a patient was given multiple doses of the same 

drug, the most recent duration of therapy was used. 

 

Genomic alterations with DNA repair and genotoxic therapy 

To investigate the relationship between somatic DNA repair defects and mutation burden we examined 

mutations in 181 genes across 12 DNA repair pathways distilled from the literature (Supplementary 

Table 7), p-values were calculated using an ANOVA method and also a resampling approach as described 

in the Supplementary Note. We excluded samples exhibiting a hypermutated phenotype, defined as  

10 mutations per Mb across the genome. An additional case was excluded as no coding mutations were 

detected.  

To investigate the effects of genotoxic treatments on genomic landscapes, drugs were grouped as 

genotoxic if they belonged to any of the following drug classes (Supplementary Table 2): anthracyclines, 

DNA alkylating, DNA synthesis inhibitor, topoisomerase I inhibitor, topoisomerase II inhibitor. 

Comparisons between treatment groups used a Wilcoxon rank-sum test. Significance was computed 

both including and excluding samples with TP53 mutations, which made up half of the DNA repair 

mutations. To control for bias from covariates for this analysis, we performed linear regression models 

using tumor type and other DNA repair mutation for the POLQ/POL zeta groups. 

Mutation signatures 

Somatic mutation signature analysis was performed from 6,181,180 somatic single base substitutions 

(SBS), 974,629 indels, and 54,042 double base substitutions (DBS) using a published framework80 for 

non-negative matrix factorization (NMF) of the mutation catalog matrix into de novo mutation 

signatures and the relative exposure of each signature for each cancer genome. Fractional exposure was 
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defined as the proportion of a genome’s total mutation burden contributed by a particular signature. 

Signature classes, stability estimates, and cohorts analyzed are as described in the Supplementary Note.  

 A total of 482 patients remained in the 12 completed SBS cohorts, 415 in the six indel cohorts, and 373 

in five double base substitution cohorts. Signatures were compared against their respective COSMIC 

reference signature (version 3, May 2019, https://cancer.sanger.ac.uk/cosmic/signatures/) using the 

cosine similarity metric. Signatures with cosine similarity to a COSMIC signature greater than 0.6 were 

considered for matching, and verified through manual inspection of the similarity matrix and the 

signatures themselves. Manual review was focused on assessment of cosine similarity with special 

attention paid to subclass-specific trends in the signature analysis. Signature exposures of less than 0.01 

were excluded from downstream analyses. 

 

Temporal analysis of SBS mutation signatures based on mutation types and NGS variant allele counts 

was performed using SignIT (https://github.com/eyzhao/SignIT), as described in the Supplementary 

Note. 

 

Within the cohort, 106 cases (22%) best fit a model with multiple temporally distinct subpopulations 

thus enabling signature timing. Mean early and late mutation signature exposures were computed by 

fitting a weighted linear model of exposure fraction versus subpopulation prevalence. 

Analysis of drug-signature associations 

Among the 20 most commonly used chemotherapy agents, 7 with known DNA damaging qualities were 

chosen for investigation: cyclophosphamide, doxorubicin, fluorouracil, cisplatin, capecitabine, 

carboplatin, and oxaliplatin. Late-arising mutation signatures, signatures of unknown etiology and all 

https://github.com/eyzhao/SignIT
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novel signatures (SBS5, SBS17, SBS31, MSBS1-MSBS6) were each assessed for differences in exposure 

between therapy-exposed and non-exposed patients by the Wilcoxon signed-rank test. Resulting p-

values were adjusted for multiple hypothesis testing using the Bonferroni-Holm method. Median days 

on treatment for platinum associated signatures are as follows: SBS31, 111 days; DBS5, 114 days; ID6, 

117 days; SBS17b, 71 days. 

Germline mutation analysis 

Germline variants, including SNVs, small indels, CNVs, and SVs in normal blood genomes were identified 

as described in the Supplementary Note. All coding and splice site germline variants in 98 cancer 

predisposition genes (Supplementary Table 7) were classified according to the American College of 

Medical Genetics (ACMG) 2015 guidelines86 using InterVar (Li & Wang, 2017) for partially automated 

classification followed by manual review. Structural and copy number variants were validated by 

Multiplex Ligation-dependent Probe Amplification, Sanger sequencing or long-range PCR where 

possible. 

Tumor genome and transcriptome data for the 98 cancer predisposition genes (Supplementary Table 7) 

was reviewed to identify potential somatic second hits, which included LOH due to deletion of the wild-

type allele or allele-specific imbalance, non-synonymous somatic SNVs or indels and low mRNA 

expression. Due to the limited size of some tumor type-specific cohorts, expression percentiles were 

calculated for each gene with respect to the entire POG570 cohort using the R package dplyr v.0.8.1, and 

low expression was defined as values below the 2.5th percentile.  

Immune cell deconvolution and repertoire analysis 

Gene expression from RNA-Seq was deconstructed using the CIBERSORT87 R package (v1.04), as 

described in the Supplementary Note. In general, samples with higher tumor content had lower 
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predicted immune scores (Extended Data Fig. 9a).  

 

To identify tumor clusters based on immune cell content, we ran ConsensusClusterPlus (v1.44.0) on the 

CIBERSORT scores for the 568 cases that had evidence of immune content using all 22 leukocyte cell 

types. The optimal number of clusters was assessed based on 80% cell type and tumor resampling over 

1000 iterations of PAM clustering for k2-k8 using Pearson distance metric for clustering and Ward’s 

method for linkage. To plot the heatmap and annotation tracks, we used the ComplexHeatmap 

(v.1.18.1) R package. The total CIBERSORT score is the sum of all the cell types in each patient. 

 

The Kaplan-Meier survival analyses shown for the immune clusters were censored at 10 years, at which 

time 18 patients remained alive. 

 

After exclusion of T cell lymphomas and samples obtained from lymph node, bone marrow and 

peripheral blood biopsies (Supplementary Table 1), a total of 459 samples were included in the T cell 

receptor (TCR) repertoire analysis using MiXCR88 (v2.1.2) (see Supplementary Note).For each sample, 

dominance (presence of a single very common TRB sequence), and diversity (Shannon diversity index, 

number and proportion of unique TRB sequences) of the TCR repertoire were calculated using the 

formulae below.  

           
                                                  

                                             
 

                                 

 

   

 

Where    is the proportion of reads supporting the ith most abundant clonotype. 
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Evaluation of treatment and survival in immune checkpoint inhibitor treated cohort 

A sub-cohort of 76 patients treated with checkpoint inhibitors (PD-1, PD-L1, CTLA-4, OX40, NKG2A and 

combinations of these with other therapies, including chemotherapy, IDO-1, LAG-3, and HER2 inhibitors) 

following a POG biopsy was used for Kaplan-Meier survival analyses of the time to treatment failure. 

Drug information post-biopsy for these patients was collected by chart review, and data was censored at 

April 2019. High mutation burden was defined as an exonic mutation burden (non-synonymous SNVs 

and indels) of 10 mutations per Mb or more. High T cell infiltration for this analysis was defined as 

higher than the 80th percentile of total T cell scores (sum of all CIBERSORT T cell scores excluding 

regulatory T cells) of all POG570 samples, excluding LYMP and THYM tumors and biopsies taken from 

lymphatic sites as these tumors are inherently populated with lymphoid cells. Kaplan-Meier analyses 

using T cell scores in this cohort also excluded these lymphoid-related tumors, resulting in a cohort of 57 

patients. 

Statistics and reproducibility 

No statistical methods were used to predetermine sample size. The experiments were not randomized 

and investigators were not blinded to groups during analyses. Tumor types with less than 10 samples 

were collected into the “other” disease group to not present any misleading data. Any sample exclusions 

for analyses are reported in the relevant section of the Methods or Supplementary Note. Unless 

otherwise stated all statistical tests were performed in R (https://cran.r-project.org/) and p values 

stated reflect two-sided tests. 

DATA AVAILABILITY 

Genomic and transcriptomic sequence datasets including metadata with library construction and 

sequencing approaches have been deposited at the European Genome–phenome Archive (EGA, 

http://www.ebi.ac.uk/ega/) as part of the study EGAS00001001159 with accession numbers as listed in 

https://cran.r-project.org/
http://www.ebi.ac.uk/ega/
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Supplementary Table 1. Data on mutations, copy changes and expression from tumor samples in the 

POG program organized by OncoTree classification (http://oncotree.mskcc.org) are also accessible from 

https://www.personalizedoncogenomics.org/cbioportal/. Complete small mutation catalog is available 

for download from http://bcgsc.ca/downloads/POG570/. Previously published TCGA and PCAWG data 

that were re-analysed here are available from data portals (https://portal.gdc.cancer.gov/ and 

https://dcc.icgc.org/) with sample barcodes as listed in Supplementary Table 9. All other data supporting 

the findings of this study are available from the corresponding author on reasonable request. 

CODE AVAILABILITY 
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