
Supplemental Material of ABySS 2.0:
Resource-Efficient Assembly of Large Genomes

using a Bloom Filter

Shaun D Jackman Benjamin P Vandervalk
Hamid Mohamadi Justin Chu Sarah Yeo

S Austin Hammond Golnaz Jahesh Hamza Khan
Lauren Coombe Rene L Warren Inanc Birol

Contents
Effect of Bloom Filter False Positive Rate 2

Assembler Comparison Details 8
Sealer Gap Filling Results . 8
Sequence Identity and Genome Coverage 8
K -mer Size Sweeps . 9
Additional Benchmarking of ABySS 13
Assemblies with Raw and BFC-corrected Reads 14
Software . 24
Assembler Scripts and Configuration Files 24

Shortened URLs from the Main Text 26

Listings
S1 ABySS 1.0 . 25
S2 ABySS 2.0. Note that the parameter c of the prerelease version

tagged bloom-abyss-preview evaluated in this paper has been
renamed to kc in the final released version of ABySS 2.0. 26

S3 ALLPATHS-LG . 26
S4 ALLPATHS-LG in_libs.csv https://github.com/bcgsc/abyss-2.

0-giab/blob/1.0/allpaths-lg/in_libs.csv 28
S5 ALLPATHS-LG in_groups.csv https://github.com/bcgsc/

abyss-2.0-giab/blob/1.0/allpaths-lg/in_groups.csv 28
S6 BCALM 2. The largest value of k supported by BCALM 2 is 63. 28

1

https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/allpaths-lg/in_libs.csv
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/allpaths-lg/in_libs.csv
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/allpaths-lg/in_groups.csv
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/allpaths-lg/in_groups.csv

S7 DISCOVAR de novo. Assemble the paired-end reads using DIS-
COVAR de novo and scaffold with ABySS-Scaffold, BESST and
LINKS. 29

S8 MaSuRCA. The script assemble.sh is generated by masurca itself. 29
S9 MaSuRCA config.txt https://github.com/bcgsc/abyss-2.

0-giab/blob/1.0/masurca/config.txt 29
S10 MEGAHIT. The variable $pe400 is the list of paths to the BFC-

corrected, interleaved, and gzipped paired-end FASTQ files. . . . 29
S11 Minia. The largest value of k supported by Minia is 128. 30
S12 SGA . 30
S13 SOAPdenovo2 . 30
S14 SOAPdenovo2 hsapiens.config https://github.com/bcgsc/

abyss-2.0-giab/blob/1.0/soapdenovo/hsapiens.config 31
S15 BioNano hybridScaffold.pl . 31
S16 ARCS. The script makeTSVfile.py is available online at https:

//github.com/sarahyeo/giab. 31

Effect of Bloom Filter False Positive Rate

To assess the effects of the Bloom filter false positive rate (FPR) on ABySS 2.0
assemblies, we conducted assemblies of the C. elegans N2 strain DRR008444
dataset (Illumina GA IIx sequencing of 2x100 bp reads of 300 bp fragments to
75 fold coverage) under a range of different Bloom FPR values and assessed
the resulting NG50, number of misassemblies, wallclock times. We note that
Bloom filter false positive rate is determined by a combination of Bloom filter
size, number of Bloom filter hash functions, and number of distinct k-mers
in the dataset, as per Equation 1 in the main text. However, the prediction
of Bloom filter FPR is further complicated by the use of a cascading chain
of Bloom filters to remove low-occurrence k-mers, as detailed in the assembly
algorithm description in Methods. For the purposes of our experiment, we fixed
all parameters affecting FPR except the Bloom filter memory allocation, which
was used as the driving parameter for the experiment. In particular, we fixed
the number of Bloom filter hash functions at 1, fixed the number of cascading
Bloom filters at 4, fixed the k-mer size at 64, and varied the Bloom filter memory
allocation from 250 MB to 3000 MB with a step size of 250 MB. For example,
the ABySS 2.0 assembly for a Bloom filter memory allocation of 250 MB was run
with the command abyss-pe c=4 k=64 H=1 B=250M in='DRR008444_1.fastq
DRR008444_2.fastq', where c=4 specifies the use of 4 cascading Bloom filters
(i.e. minimum k-mer count threshold of 4), k=64 specifies a k-mer size of 64, and
H=1 specifies that the Bloom filter should use a single hash function. The runs
for other Bloom filter sizes used the same parameter values with the exception
of B (Bloom filter memory allocation). The wallclock time of the assemblies
was measured with /usr/bin/time and the false positive rates corresponding to
each Bloom filter size were obtained from the ABySS 2.0 log files. All assemblies

2

https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/masurca/config.txt
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/masurca/config.txt
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/soapdenovo/hsapiens.config
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/soapdenovo/hsapiens.config
https://github.com/sarahyeo/giab
https://github.com/sarahyeo/giab

were run with 12 threads on an isolated machine with 48GB RAM and two Xeon
X5650 CPUs.

We used QUAST 3.2 to calculate the NG50 and misassembly metrics for the
experiment, using the C. elegans Bristol N2 strain as the reference genome
(NCBI BioProject PRJNA158). Expanding on the results presented in Fig. 3 of
the main text, Fig. S1, S2, S3 depict the changes to FPR, wallclock time, and a
variety of QUAST contiguity and misassembly metrics that result from changing
the Bloom filter allocation, while Tables S1, S2, S3 provide the corresponding
data. We observe that as the Bloom filter memory decreases from 3000 MB to
500 MB (FPR values of 1.91% and 10.9%, respectively), the majority of assembly
metrics remain stable. However, large changes in the metrics occur when the
Bloom filter allocation is decreased further from 500 MB to 250 MB (FPR values
of 10.9% and 20.7%, respectively). We similarly observe a steep increase in
wallclock time from 57 min to 152 min when further decreasing Bloom filter
allocation from 500 MB to 250 MB. These results indicate that a target FPR
between 5% - 10% provides the best trade-off between assembly quality, wallclock
time, and memory usage.

Table S1: Bloom filter memory, N50, NG50, NGA50, number of misassemblies,
number of relocation misassemblies, and number of misassembled contigs reported
by QUAST 3.2 for ABySS 2.0 assemblies of C. elegans dataset DRR008444,
using the C. elegans Bristol N2 strain as the reference genome (NCBI BioProject
PRJNA158). Results are shown for Bloom filter memory allocations ranging
between 250 MB and 3000 MB with a step size 250 MB. Number of translocation
misassemblies and inversion misassemblies are omitted because their count was
zero across all Bloom filter sizes.

Bloom
Filter Mem
(MB) N50 NG50 NGA50 Misassemblies Relocations

Misassembled
Contigs

250 10512 9306 9294 9 9 9
500 10954 9629 9608 9 9 9
750 10973 9610 9607 9 9 9
1000 10956 9607 9603 9 9 9
1250 10984 9607 9603 9 9 9
1500 10987 9608 9606 9 9 9
1750 10980 9607 9598 9 9 9
2000 10970 9607 9597 9 9 9
2250 10973 9594 9587 9 9 9
2500 10973 9587 9584 9 9 9
2750 10970 9591 9586 9 9 9
3000 10970 9597 9594 9 9 9

3

●

●
●

●

● ● ● ● ● ● ● ●

10500

10600

10700

10800

10900

11000

1000 2000 3000
Bloom filter memory (MB)

N
50

●

●

● ● ● ● ● ●
● ● ● ●

9300

9400

9500

9600

1000 2000 3000
Bloom filter memory (MB)

N
G

50

●

● ● ● ● ●
● ●

● ● ●
●

9300

9400

9500

9600

1000 2000 3000
Bloom filter memory (MB)

N
G

A
50

● ● ● ● ● ● ● ● ● ● ● ●

8.50

8.75

9.00

9.25

9.50

1000 2000 3000
Bloom filter memory (MB)

m
is

as
se

m
bl

ie
s

● ● ● ● ● ● ● ● ● ● ● ●

8.50

8.75

9.00

9.25

9.50

1000 2000 3000
Bloom filter memory (MB)

re
lo

ca
tio

ns

● ● ● ● ● ● ● ● ● ● ● ●

8.50

8.75

9.00

9.25

9.50

1000 2000 3000
Bloom filter memory (MB)

m
is

as
se

m
bl

ed
 c

on
tig

s

Figure S1: N50, number of misassemblies, NG50, number of relocation misas-
semblies, NGA50, and number of misassembled contigs reported by QUAST
3.2 for ABySS 2.0 assemblies of C. elegans dataset DRR008444, using the C.
elegans Bristol N2 strain as the reference genome (NCBI BioProject PRJNA158).
Results are shown for Bloom filter memory allocations ranging between 250 MB
and 3000 MB with a step size 250 MB. Number of translocation misassemblies
and inversion misassemblies are omitted because their count was zero across all
Bloom filter sizes.

4

●

●
●

● ● ● ● ●

●

● ● ●

87390

87400

87410

87420

87430

87440

1000 2000 3000
Bloom filter memory (MB)

m
is

as
se

m
bl

ed
 c

on
tig

s
le

ng
th

● ● ●

● ● ● ● ● ● ● ● ●

30.00

30.25

30.50

30.75

31.00

1000 2000 3000
Bloom filter memory (MB)

lo
ca

l m
is

as
se

m
bl

ie
s

●

●

●

● ●
●

● ●
● ●

● ●

1020

1040

1060

1080

1000 2000 3000
Bloom filter memory (MB)

m
is

m
at

ch
es

●

●

● ●
●

●

●

●
●

●

●

●

950

960

970

980

1000 2000 3000
Bloom filter memory (MB)

in
de

ls
●

●

● ●

●

●

●

●
●

●

●

●
910

920

930

1000 2000 3000
Bloom filter memory (MB)

sh
or

t i
nd

el
s

●

●

● ● ●

● ● ● ● ● ● ●48

49

50

51

1000 2000 3000
Bloom filter memory (MB)

lo
ng

 in
de

ls

Figure S2: Sum length of misassembled contigs, number of indels, number of
local misassemblies, number of short indels, number of mismatches, and number
of long indels reported by QUAST 3.2 for ABySS 2.0 assemblies of C. elegans
dataset DRR008444, using the C. elegans Bristol N2 strain as the reference
genome (NCBI BioProject PRJNA158). Results are shown for Bloom filter
allocations ranging between 250 MB and 3000 MB with a step size 250 MB.

5

●

●

●

●

●

●

●
● ●

●

●

●

2175

2200

2225

2250

2275

1000 2000 3000
Bloom filter memory (MB)

in
de

ls
 le

ng
th

● ● ● ● ● ● ● ● ● ● ● ●

0e+00

3e+07

6e+07

9e+07

1000 2000 3000
Bloom filter memory (MB)

re
co

ns
tr

uc
tio

n

●

●

●

●

●

●
●

●
●

● ● ●

5

10

15

20

1000 2000 3000
Bloom filter memory (MB)

fa
ls

e
po

si
tiv

e
ra

te
 (

%
)

●

● ●

●

●
● ● ● ● ● ● ●

60

90

120

150

1000 2000 3000
Bloom filter memory (MB)

w
al

lc
lo

ck
 ti

m
e

(m
in

)

Figure S3: Sum length of indels, Bloom filter false positive rate, reconstruction,
and wallclock time for ABySS 2.0 assemblies of C. elegans dataset DRR008444,
using Bloom filter memory allocations ranging between 250 MB and 3000 MB
with a step size 250 MB. Sum length of indels and reconstruction were computed
by QUAST 3.2 using the C. elegans Bristol N2 strain as the reference genome
(NCBI BioProject PRJNA158). The reconstruction figure corresponds to the
“Total_length” column reported by QUAST, which the sum length of all assem-
bled sequences >= 500 bp. The dashed line of the reconstruction plot indicates
the length of the reference genome sequence.

6

Table S2: Bloom filter memory, sum length of misassembled contigs, number
of local misassemblies, number of mismatches, number of indels, number of
short indels, and number of long indels reported by QUAST 3.2 for ABySS
2.0 assemblies of C. elegans dataset DRR008444, using the C. elegans Bristol
N2 strain as the reference genome (NCBI BioProject PRJNA158). Results are
shown for Bloom filter memory allocations ranging between 250 MB and 3000
MB with a step size 250 MB.

Bloom
Filter
Mem
(MB)

Misassembled
Contigs
Length

Local
Misassemblies MismatchesIndels

Short
Indels

Long
Indels

250 87390 30 1079 987 937 50
500 87436 30 1017 962 911 51
750 87438 30 1021 956 907 49
1000 87435 31 1013 956 907 49
1250 87435 31 1013 954 905 49
1500 87435 31 1011 958 910 48
1750 87436 31 1014 951 903 48
2000 87437 31 1013 954 906 48
2250 87440 31 1011 953 905 48
2500 87436 31 1012 954 906 48
2750 87437 31 1014 950 902 48
3000 87436 31 1014 956 908 48

Table S3: Bloom filter memory, sum length of indels, reconstruction, Bloom filter
false positive rate, and wallclock time for ABySS 2.0 assemblies of C. elegans
dataset DRR008444, using Bloom filter memory allocations ranging between
250 MB and 3000 MB with a step size 250 MB. Sum length of indels and recon-
struction were computed by QUAST 3.2 using the C. elegans Bristol N2 strain
as the reference genome (NCBI BioProject PRJNA158). The reconstruction
figure corresponds to the “Total_length” column reported by QUAST, which
the sum length of all assembled sequences >= 500 bp. The dashed line of the
reconstruction plot indicates the length of the reference genome sequence.

Bloom Filter
Mem (MB)

Indels
Length Reconstruction False Positive Rate

Wallclock
(min)

250 2274 92365990 20.7 152.31
500 2282 92276322 10.9 57.13
750 2242 92248132 7.43 57.29
1000 2217 92162266 5.62 40.98
1250 2237 92135097 4.52 48.17
1500 2188 92166918 3.78 46.04
1750 2180 92112941 3.25 45.74

7

Bloom Filter
Mem (MB)

Indels
Length Reconstruction False Positive Rate

Wallclock
(min)

2000 2182 92152839 2.85 44.37
2250 2181 92081875 2.54 43.99
2500 2183 92045926 2.29 44.00
2750 2178 92055208 2.08 42.84
3000 2184 92099533 1.91 42.82

Assembler Comparison Details

Sealer Gap Filling Results

In addition to comparing the contiguity and correctness of the contig sequences
in Fig. 3A, we also assessed the contiguity improvements produced by closing
scaffold gaps with Sealer, prior to splitting the sequences at ’N’s. Sealer is a tool
that fills scaffold gaps by searching for a connecting path between gap flanks in
the de Bruijn graph, using multiple k-mer sizes. For the ABySS 1.0 assembly,
Sealer closed 33,380 of 148,795 (22.4%) of scaffold gaps and increased the contig
NG50 from 30 kbp to 38 kbp. For the ABySS 2.0 assembly, Sealer closed 33,533
of 213,480 (15.7%) scaffolds and increased the contig NG50 from 21 kbp to 25
kbp.

Sequence Identity and Genome Coverage

We aligned the contigs to the reference genome using BWA-MEM and filtered out
secondary alignments (SAM flag 0x100). We calculated the number of reference
nucleotides covered by contigs and the total number of aligned contig nucleotides
using samtools depth. We calculated the total number of mismatching nu-
cleotides by computing the sum of the SAM NM tag (number of mismatches) of
the alignments. The percent identity is calculated as one minus the number
of mismatches divided by the total number of aligned contig nucleotides. The
percent genome coverage is calculated as the number of reference genome po-
sitions covered by an aligned contig divided by the number of non-N reference
nucleotides, 2,937,639,113 bp.

Table S4: Percent genome coverage, percent sequence identity and the corre-
sponding PHRED-scaled quality value of contigs aligned to the reference genome
using BWA-MEM

Assembler Genome coverage Identity QV
ABySS 1.0 96.0 99.71 25.4
ABySS 2.0 96.2 99.69 25.2

8

Assembler Genome coverage Identity QV
BCALM 2 97.1 99.75 26.1
DISCOVAR de novo 96.7 99.64 24.4
MEGAHIT 97.6 99.54 23.4
Minia 93.6 99.78 26.7
SGA 97.2 99.50 23.0
SOAPdenovo2 93.0 99.80 27.1

K-mer Size Sweeps

For most of the assemblers, we conducted assemblies across a range of k-mer sizes
and selected the optimal k-mer size based on the trade-off between maximizing
contiguity (NGA50/NG50) and minimizing the number of breakpoints when
aligning the sequences to the reference genome GRCh38 (Fig. S5, Tables S5,
S6, S7, S8, S9). We note that Minia did not support k-mer sizes greater than
128 and BCALM 2 did not support k-mers sizes larger than 63. Assemblers
for which we did not perform k-mer size optimization were DISCOVAR de
novo, MEGAHIT, and SGA. In the case of DISCOVAR de novo, the software
determines a suitable k-mer size automatically from the input data (author
communication). In the case of MEGAHIT, the algorithm assembles across
multiple k-mer sizes simultaneously. To better cover the full read length of 250bp,
we extended the default range of k-mer sizes for MEGAHIT from 21,41,61,81,99
to 17,45,73,101,129,157,185,213,241 to achieve improved contiguity (NG50 of 8293
bp vs. 4058 bp) at the expense of additional running time (25.6 hours vs. 15.5
hours) and no significant increase in memory usage (196.9 GB vs. 194.5 GB). In
the case of SGA, the assembly follows the string graph paradigm (Myers 2005)
which accomodates variable-size overlaps, and so the k-mer size optimization
was not needed.

Table S5: Scaffold contiguity and number of breakpoints for ABySS 1.0 assemblies
of the GIAB HG004 dataset, conducted across a range of k-mer sizes. NGA50
and number of breakpoints were calculated by aligning the sequences to GRCh38
using BWA-MEM.

K -mer Size Scaffold NGA50 (Mbp) Scaffold NG50 (Mbp) Breakpoints
96 2.77 2.79 2736
128 3.83 4.01 2966
136 4.02 4.32 2911
140 3.90 4.36 2922
144 4.36 4.61 2994
148 4.06 4.50 3050
152 4.02 4.37 3077
160 3.59 4.22 3137

9

Figure S4: Percent genome coverage and percent sequence identity of contigs
aligned to the reference genome using BWA-MEM

10

Figure S5: De Bruijn graph assembly results across a range of k-mer sizes for
the Genome in a Bottle HG004 data set, using ABySS 1.0 (Panel A), ABySS 2.0
(Panel B), BCALM 2 (Panel C), Minia (Panel D), and SOAPdenovo2 (Panel E).
The Y axis shows the range of NGA50 to NG50 to indicate the uncertainty caused
by real genomic variants between individual HG004 and the reference genome
(GRCh38), and the X axis shows the number of breakpoints that occurred when
aligning the sequences to the reference genome. For each assembler, a single “best”
assembly (show in green) was selected for inclusion in the assembler comparison
of Fig. 3, based on the trade-off of maximizing contiguity (NGA50-NG50 range)
and minimizing breakpoints.

11

Table S6: Scaffold contiguity and number of breakpoints for ABySS 2.0 assemblies
of the GIAB HG004 dataset, conducted across a range of k-mer sizes. NGA50
and number of breakpoints were calculated by aligning the sequences to GRCh38
using BWA-MEM.

K -mer Size Scaffold NGA50 (Mbp) Scaffold NG50 (Mbp) Breakpoints
96 2.04 2.22 2530
112 2.67 2.99 2531
128 2.79 3.10 2668
144 2.97 3.49 2717
160 2.86 3.33 2722

Table S7: Scaffold contiguity and number of breakpoints for BCALM 2 assemblies
of the GIAB HG004 dataset, conducted across a range of k-mer sizes. NGA50
and number of breakpoints were calculated by aligning the sequences to GRCh38
using BWA-MEM.

K -mer Size Contig NGA50 (kbp) Contig NG50 (kbp) Breakpoints
31 0.54 0.54 111
39 0.73 0.73 152
47 0.89 0.90 170
55 1.05 1.05 206
63 1.19 1.20 236

Table S8: Scaffold contiguity and number of breakpoints for Minia assemblies of
the GIAB HG004 dataset, conducted across a range of k-mer sizes. NGA50 and
number of breakpoints were calculated by aligning the sequences to GRCh38
using BWA-MEM.

K -mer Size Contig NGA50 (kbp) Contig NG50 (kbp) Breakpoints
32 0.89 0.89 194
48 1.66 1.67 389
64 2.53 2.54 695
80 3.48 3.50 888
96 4.25 4.28 872
104 4.42 4.44 880
112 4.60 4.63 925
128 4.75 4.78 949

12

Table S9: Scaffold contiguity and number of breakpoints for SOAPdenovo2
assemblies of the GIAB HG004 dataset, conducted across a range of k-mer sizes.
NGA50 and number of breakpoints were calculated by aligning the sequences to
GRCh38 using BWA-MEM.

K -mer Size Scaffold NGA50 (kbp) Scaffold NG50 (kbp) Breakpoints
63 7.98 27.87 26705
79 6.16 12.16 9978
95 102.71 172.11 11219
111 35.97 85.92 18144
127 2.38 2.54 1223

Additional Benchmarking of ABySS

All assemblies for the assembler comparison of Fig. 3 were run on servers with
4 Xeon E7-8867 v3 CPUs running @ 2.50GHz, having a total of 64 cores and
2.5 TB of RAM. In addition to the main runs on the Xeon E7 machines, we
also conducted additional performance tests for ABySS 1.0 and ABySS 2.0 on
alternate architectures.

To measure the performance of ABySS 1.0 in a cluster environment, we bench-
marked an MPI assembly job distributed across 11 nodes, each having 48 GB
RAM and 2 Xeon X5650 CPUs running at 2.67 GHz. Each cluster node provided
a total of 12 CPU cores and the cluster nodes were interconnected via Infiniband.
Table S10 compares the wallclock times of the distributed ABySS 1.0 job and
the main ABySS 1.0 run from Fig. 3, which was run on a single 64-core Xeon E7
machine. For the sake of comparison, we set the number of MPI processes for the
cluster assembly job to 64 (abyss-pe parameter “np=64”), even though 132 CPU
cores were available across the 11 cluster nodes. Wallclock times in Table S10 are
broken down by ABySS assembly stage. We note that only the first (unitig) stage
of the ABySS assembly pipeline is distributed across nodes with MPI, whereas
the contig and scaffold stages are multithreaded and run on a single node. As a
result, the contig stage ran much more slowly for the cluster-based ABySS 1.0
job than for the single-machine Xeon E7 run (14.0 hours vs. 3.3 hours). The
scaffold stage, which is not as computationally intensive as the contig stage, ran
in roughly the same wallclock time in both cases (4.5 hours vs. 4.8 hours). The
overall wallclock time for the distributed ABySS 1.0 assembly was 25.4 hours
vs. 14.3 hours for the E7 run. In practice, the distributed ABySS 1.0 job also
required more memory than the single-machine E7 run. While the E7 run had a
peak memory requirement of 418 GB RAM, the cluster job required 528 GB of
aggregate RAM (11 nodes with 48 GB per node). Although the actual memory
used by ABySS 1.0 was the same in both cases, the cluster job required extra
headroom because the distribution of k-mer data was not perfectly even across
MPI processes.

13

Table S10: Breakdown of wallclock time for two ABySS 1.0 assemblies of the
Genome in a Bottle HG004 data set, run on different platforms. The assembly
corresponding to the “HPC cluster” column was an MPI job distributed across
11 cluster nodes with 48 GB RAM and 2 Xeon X5650 CPUs each. Each cluster
node provided a total of 12 CPU cores. The assembly for the “Xeon E7” job
was run on a single machine having 2.5 TB RAM and 4 Xeon E7-8867 v3 CPUs
providing a total of 64 cores.

assembly stage wallclock hours (HPC cluster) wallclock hours (Xeon E7)
unitigs 6.9 (11 nodes, 64 MPI processes) 6.2 (1 node, 64 MPI processes)
contigs 14.0 (1 node, 12 threads) 3.3 (1 node, 64 threads)
scaffolds 4.5 (1 node, 12 threads) 4.8 (1 node, 64 threads)

To test the performance of ABySS 2.0 on a low-memory machine, we benchmarked
the ABySS 2.0 on a node with 48 GB RAM and 2 Xeon X5650 CPUs running at
2.67 GHz, having a total of 12 cores. As expected, the peak RAM usage was the
same as for the E7 run (34 GB), while the wallclock time was approximately 4
times longer (80 hours vs. 20 hours). We attribute the longer wallclock time to
the use of 12 threads rather than 64 threads, due to the lower number of cores
available on this machine in comparison to the Xeon E7 server.

Assemblies with Raw and BFC-corrected Reads

To assess the impact of using BFC-corrected reads in our assembly comparison
of Fig. 3, we ran equivalent assemblies on the uncorrected reads and compared
the contig NGA50, contig NG50, alignment breakpoints, peak memory usage,
and wallclock time to the values measured for BFC-corrected reads (Fig. S6,
Tables S11, S12). For each assembler, we used identical command line parameters
for the uncorrected reads assembly as were used on the BFC-corrected reads (see
Methods). We note that the BFC-corrected assemblies generally required less
time and memory and produced improved assembly contiguity in comparison
to the uncorrected reads. Two minor exceptions were: (i) DISCOVAR de novo
whose contig NG50 and NGA50 were 1.9% and 2.0% less respectively with the
BFC corrected reads, and (ii) SGA which ran slightly faster on uncorrected
reads (60 hours vs. 65 hours). For consistency, we used the assemblies of BFC
corrected reads for all assemblers in Fig. 3 of the main text.

Table S11: The sequence contiguity and number of breakpoints of assemblies
using raw and BFC-corrected reads from the GIAB HG004 dataset. NGA50 and
number of breakpoints were calculated by aligning the sequences to GRCh38
using BWA-MEM.

Assembly Reads Contig NG50 (kbp) Contig NGA50 (kbp) Breakpoints
ABySS 1.0 BFC 30.0 29.1 1898

14

Assembly Reads Contig NG50 (kbp) Contig NGA50 (kbp) Breakpoints
ABySS 1.0 + Sealer BFC 38.2 36.3 2268
ABySS 1.0 raw 19.9 19.5 1797
ABySS 1.0 + Sealer raw 27.6 26.5 2278
ABySS 2.0 BFC 20.6 20.1 1813
ABySS 2.0 + Sealer BFC 24.5 23.7 2089
ABySS 2.0 raw 14.2 13.9 1672
ABySS 2.0 + Sealer raw 17.1 16.6 2153
BCALM 2 BFC 1.2 1.2 236
BCALM 2 raw 1.2 1.2 239
DISCOVAR de novo BFC 82.1 76.6 1947
DISCOVAR de novo raw 83.7 78.2 1958
MEGAHIT BFC 8.3 8.1 1709
MEGAHIT raw 4.7 4.6 1700
Minia BFC 4.8 4.8 949
Minia raw 3.9 3.9 878
SGA BFC 7.9 7.9 859
SGA raw 5.8 5.7 764
SOAPdenovo2 BFC 3.8 3.7 609

Table S12: The peak memory usage and wall clock run time of assemblies using
raw and BFC-corrected reads from the GIAB HG004 dataset. Each assembler
was run with 64 threads.

Assembly Reads Memory (GB) Time (h)
ABySS 1.0 BFC 418 14
ABySS 1.0 + Sealer BFC 418 39
ABySS 1.0 raw 975 16
ABySS 1.0 + Sealer raw 975 46
ABySS 2.0 BFC 34 20
ABySS 2.0 + Sealer BFC 34 51
ABySS 2.0 raw 57 22
ABySS 2.0 + Sealer raw 57 53
BCALM 2 BFC 5 9
BCALM 2 raw 5 9
DISCOVAR de novo BFC 618 26
DISCOVAR de novo raw 640 28
MEGAHIT BFC 197 26
MEGAHIT raw 321 33
Minia BFC 137 20
Minia raw 138 27
SGA BFC 82 65
SGA raw 89 60
SOAPdenovo2 BFC 659 35

15

Assembly Reads Memory (GB) Time (h)

16

Figure S6: Comparison of assembly results for uncorrected reads and BFC-
corrected reads for the GIAB HG004 dataset using ABySS 1.0, ABySS 2.0,
BCALM 2, DISCOVAR de novo, Minia, SGA, and SOAPdenovo2. (A) Peak
memory usage and wallclock times of each assembler when run on raw and
BFC-corrected reads. (B) NG50 and number of breakpoints for contig sequences
generated from raw and BFC-corrected reads. The number of breakpoints was
calculated by aligning the assembled sequences to the reference genome GRCh38
with BWA MEM 0.7.13. For assemblies with scaffolding stages, the contigs were
extracted by splitting the sequences at ‘N’ characters. While the SOAPdenovo2
assembly of BFC-corrected reads completed successfully, the SOAPdenovo2
assembly on uncorrected reads failed with a segmentation fault, and thus only
the BFC-corrected result is shown.

17

Figure S7: A Circos Assembly Consistency Plot for the ABySS 1.0 + BioNano
Assembly. Scaftigs from the largest scaffolds that compose 90% of the genome
are aligned to GRCh38 using BWA-MEM. GRCh38 chromosomes are displayed
on the left and the scaffolds on the right. Connections show the aligned regions
between the genome and scaffolds. Contigs are included as a part of the same
region if the are within 1Mbp of on either side of the connection, and regions
shorter than 100 kbp are not shown. The black regions on the chromosomes
indicate gaps in the reference and the circles indicate the centromere location on
each chromosome.

18

Figure S8: A Circos Assembly Consistency Plot for the ABySS 2.0 + BioNano
Assembly. Scaftigs from the largest scaffolds that compose 90% of the genome
are aligned to GRCh38 using BWA-MEM. GRCh38 chromosomes are displayed
on the left and the scaffolds on the right. Connections show the aligned regions
between the genome and scaffolds. Contigs are included as a part of the same
region if the are within 1Mbp of on either side of the connection, and regions
shorter than 100 kbp are not shown. The black regions on the chromosomes
indicate gaps in the reference and the circles indicate the centromere location on
each chromosome.

19

Figure S9: A Circos Assembly Consistency Plot for the ABySS 2.0 + BioNano
+ Chromium Assembly. Scaftigs from the largest scaffolds that compose 90% of
the genome are aligned to GRCh38 using BWA-MEM. GRCh38 chromosomes
are displayed on the left and the scaffolds on the right. Connections show
the aligned regions between the genome and scaffolds. Contigs are included
as a part of the same region if the are within 1Mbp of on either side of the
connection, and regions shorter than 100 kbp are not shown. The black regions
on the chromosomes indicate gaps in the reference and the circles indicate the
centromere location on each chromosome.

20

Figure S10: A Circos Assembly Consistency Plot for the DISCOVAR de novo
+ ABySS-Scaffold + BioNano Assembly. Scaftigs from the largest scaffolds
that compose 90% of the genome are aligned to GRCh38 using BWA-MEM.
GRCh38 chromosomes are displayed on the left and the scaffolds on the right.
Connections show the aligned regions between the genome and scaffolds. Contigs
are included as a part of the same region if the are within 1Mbp of on either
side of the connection, and regions shorter than 100 kbp are not shown. The
black regions on the chromosomes indicate gaps in the reference and the circles
indicate the centromere location on each chromosome.

21

Figure S11: A Circos Assembly Consistency Plot for the DISCOVAR de novo +
BESST + BioNano Assembly. Scaftigs from the largest scaffolds that compose
90% of the genome are aligned to GRCh38 using BWA-MEM. GRCh38 chro-
mosomes are displayed on the left and the scaffolds on the right. Connections
show the aligned regions between the genome and scaffolds. Contigs are included
as a part of the same region if the are within 1Mbp of on either side of the
connection, and regions shorter than 100 kbp are not shown. The black regions
on the chromosomes indicate gaps in the reference and the circles indicate the
centromere location on each chromosome.

22

Figure S12: A Circos Assembly Consistency Plot for the DISCOVAR de novo +
LINKS + BioNano Assembly. Scaftigs from the largest scaffolds that compose
90% of the genome are aligned to GRCh38 using BWA-MEM. GRCh38 chro-
mosomes are displayed on the left and the scaffolds on the right. Connections
show the aligned regions between the genome and scaffolds. Contigs are included
as a part of the same region if the are within 1Mbp of on either side of the
connection, and regions shorter than 100 kbp are not shown. The black regions
on the chromosomes indicate gaps in the reference and the circles indicate the
centromere location on each chromosome.

23

Software

Most software used in these analyses was installed from the Homebrew-Science
software collection using Linuxbrew with the command brew install abyss
allpaths-lg bcalm bfc bwa discovardenovo masurca megahit nxtrim
samtools seqtk sga soapdenovo. The following three tools were installed
manually.

• ABySS 2.0 preview: https://github.com/bcgsc/abyss/tree/bloom-abyss-preview
• LINKS 1.8.2: http://www.bcgsc.ca/platform/bioinfo/software/links/

releases/1.8.2
• Minia 3.0.0-alpha1: https://github.com/GATB/minia/archive/v3.0.

0-alpha1.tar.gz

Assembler Scripts and Configuration Files

For ABySS 1.0 (Simpson et al. 2009), we installed version 1.9.0 and assembled
the paired-end and mate-pair reads with the command shown in Supplemental
Listing S1, where the files pe400.in and mp6k+unknown.in are lists of the
locations of compressed FASTQ files.

For ABySS 2.0, we assembled the paired-end and mate-pair reads with the
command shown in Supplemental Listing S2. In comparison to the ABySS 1.0
assembly command, three Bloom filter-specific assembly parameters were added
(B=26G H=4 kc=3), which specify the total memory allocated to the Bloom filters,
the number of Bloom filter hash functions, and the number of cascading Bloom
filter levels, respectively. We determined the values for total memory size (B)
and number of hash functions (H) by counting distinct 144-mers with ntCard
(Mohamadi et. al 2017) and targeting a false positive rate of 5% for the first
level of the cascading Bloom filter. We deemed 5% to be a suitable upper bound
for Bloom filter FPR based on the results of our C. elegans experiment above,
which indicated good performance in the range of 5-10% FPR. We determined
the optimal number of cascading Bloom filter levels by running assemblies
with kc=2, kc=3, and kc=4, and choosing the assembly with highest NG50 and
lowest number of breakpoints. Note that the parameter kc of the final release
version of ABySS 2.0 was originally named c in the prerelease version tagged
bloom-abyss-preview evaluated in this paper.

For ALLPATHS-LG (Gnerre et al. 2010), we installed version 52488 and
attempted to assemble the paired-end and mate-pair reads with the command
shown in Supplemental Listing S3 and the configuration files in_libs.csv and
in_groups.csv shown in Supplemental Listings S4–S5. We terminated the
ALLPATHS-LG job after it ran for more than a month without completing.

For BCALM 2 (Chikhi et al. 2016), we installed version 2.0.0 and assembled
the paired-end reads with the command shown in Supplemental Listing S6. The
largest value of k supported by BCALM 2 is 63.

24

https://github.com/bcgsc/abyss/tree/bloom-abyss-preview
http://www.bcgsc.ca/platform/bioinfo/software/links/releases/1.8.2
http://www.bcgsc.ca/platform/bioinfo/software/links/releases/1.8.2
https://github.com/GATB/minia/archive/v3.0.0-alpha1.tar.gz
https://github.com/GATB/minia/archive/v3.0.0-alpha1.tar.gz

For DISCOVAR de novo, the whole genome de novo assembly successor of DIS-
COVAR (Weisenfeld et al. 2014), we installed version 52488 and assembled the
paired-end reads and scaffolded this assembly using three standalone scaffolding
tools, ABySS-Scaffold 1.9.0, BESST 2.2.4 (Sahlin et al. 2016), and LINKS 1.8.2
(Warren et al. 2015), with the command shown in Supplemental Listing S7.

For MaSuRCA (Zimin et al. 2013), we installed version 3.1.3 and attempted
to assemble the paired-end and mate-pair reads with the command shown in
Supplemental Listing S8 and the configuration file config.txt shown in Supple-
mental Listing S9. MaSuRCA ran for five days and failed with a segmentation
fault in the program gatekeeper.

For MEGAHIT (Li et al. 2016), we installed version 1.0.6-3-gfb1e59b and
assembled the paired-end reads with the command shown in Supplemental
Listing S10.

For Minia (Chikhi et al. 2013), we installed version 3.0.0-alpha1 and assembled
the paired-end reads with the command shown in Supplemental Listing S11.
The largest value of k supported by Minia was 128.

For SGA (Simpson and Durbin 2011), we installed version 0.10.14 and assembled
the paired-end reads with the command shown in Supplemental Listing S12.

For SOAPdenovo2 (Luo et al. 2012), we installed version 2.04 and assembled
the paired-end and mate-pair reads with the command shown in Supplemental
Listing S13 and the configuration file hsapiens.config shown in Supplemental
Listing S14.

We used the BioNano optical map to further scaffold the ABySS 1.0, ABySS 2.0
and DISCOVAR de novo assemblies, scaffolded with ABySS-Scaffold, BESST
and LINKS, using IrysSolve 2.1.5063 with the command shown in Supplemental
Listing S15 according to the document “Theory Of Operation: Hybrid Scaffolding”
available online at http://bit.ly/bionano-scaffolding. The configuration files are
used unmodified as distributed by BioNano Genomics and available online at
https://github.com/bcgsc/abyss-2.0-giab/tree/master/bionano.

We used 10x Genomics Chromium data to scaffold the ABySS 2.0 + BioNano
scaffolds with ARCS (Yeo et al. 2017) and LINKS 1.8.2 (Warren et al. 2015).
The version of ARCS used in the paper is available from: https://github.com/
bcgsc/arcs/tree/arcs-prerelease. We aligned the Chromium reads to the ABySS
2.0 + BioNano scaffolds using BWA-MEM with default settings and ran ARCS
and LINKS with the commands shown in Supplemental Listing S16.

Listing S1 ABySS 1.0
abyss-pe name=hsapiens np=64 k=144 q=15 v=-v l=40 s=1000 n=10 \

S=1000-10000 N=15 mp6k_de=--mean mp6k_n=1 \
lib=pe400 pe400=$(<pe400.in) \
mp=mp6k mp6k=$(<mp6k+unknown.in)

25

http://bit.ly/bionano-scaffolding
https://github.com/bcgsc/abyss-2.0-giab/tree/master/bionano
https://github.com/bcgsc/arcs/tree/arcs-prerelease
https://github.com/bcgsc/arcs/tree/arcs-prerelease

Listing S2 ABySS 2.0. Note that the parameter c of the prerelease version
tagged bloom-abyss-preview evaluated in this paper has been renamed to kc
in the final released version of ABySS 2.0.
abyss-pe name=hsapiens np=64 k=144 q=15 v=-v l=40 s=1000 n=10 \

B=26G H=4 c=3 \
S=1000-10000 N=7 mp6k_de=--mean mp6k_n=1 \
lib=pe400 pe400=$(<pe400.in) \
mp=mp6k mp6k=$(<mp6k+unknown.in)

Listing S3 ALLPATHS-LG
PrepareAllPathsInputs.pl DATA_DIR=$PWD PLOIDY=2 HOSTS=32
RunAllPathsLG PRE=. REFERENCE_NAME=. DATA_SUBDIR=. RUN=allpaths SUBDIR=run

Shortened URLs from the Main Text

Table S13: Shortened URLs

Short URL Full URL
http://bit.ly/hiseq2500 http://www.illumina.com/systems/

hiseq_2500_1500/performance_
specifications.html

http://bit.ly/cornell-price-list http://www.biotech.cornell.edu/brc/
genomics/services/price-list

http://bit.ly/bionano-scaffolding http://bionanogenomics.com/
wp-content/uploads/2016/04/
30073-Rev-A-Hybrid-Scaffolding-Theory-of-Operations.
pdf

http://bit.ly/hg004-2x250 https:
//github.com/genome-in-a-bottle/
giab_data_indexes/blob/master/
AshkenazimTrio/sequence.index.
AJtrio_Illumina_2x250bps_06012016

http://bit.ly/hg004-6kb https:
//github.com/genome-in-a-bottle/
giab_data_indexes/blob/master/
AshkenazimTrio/sequence.index.
AJtrio_Illumina_6kb_matepair_
wgs_08032015

http://bit.ly/hg004-bionano https:
//github.com/genome-in-a-bottle/
giab_data_indexes/blob/master/
AshkenazimTrio/alignment.index.
AJtrio_BioNano_xmap_cmap_
GRC37_10012015

26

http://bit.ly/hiseq2500
http://www.illumina.com/systems/hiseq_2500_1500/performance_specifications.html
http://www.illumina.com/systems/hiseq_2500_1500/performance_specifications.html
http://www.illumina.com/systems/hiseq_2500_1500/performance_specifications.html
http://bit.ly/cornell-price-list
http://www.biotech.cornell.edu/brc/genomics/services/price-list
http://www.biotech.cornell.edu/brc/genomics/services/price-list
http://bit.ly/bionano-scaffolding
http://bionanogenomics.com/wp-content/uploads/2016/04/30073-Rev-A-Hybrid-Scaffolding-Theory-of-Operations.pdf
http://bionanogenomics.com/wp-content/uploads/2016/04/30073-Rev-A-Hybrid-Scaffolding-Theory-of-Operations.pdf
http://bionanogenomics.com/wp-content/uploads/2016/04/30073-Rev-A-Hybrid-Scaffolding-Theory-of-Operations.pdf
http://bionanogenomics.com/wp-content/uploads/2016/04/30073-Rev-A-Hybrid-Scaffolding-Theory-of-Operations.pdf
http://bit.ly/hg004-2x250
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_2x250bps_06012016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_2x250bps_06012016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_2x250bps_06012016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_2x250bps_06012016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_2x250bps_06012016
http://bit.ly/hg004-6kb
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_08032015
http://bit.ly/hg004-bionano
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_BioNano_xmap_cmap_GRC37_10012015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_BioNano_xmap_cmap_GRC37_10012015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_BioNano_xmap_cmap_GRC37_10012015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_BioNano_xmap_cmap_GRC37_10012015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_BioNano_xmap_cmap_GRC37_10012015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_BioNano_xmap_cmap_GRC37_10012015

Short URL Full URL
http://bit.ly/hg004-chromium https:

//github.com/genome-in-a-bottle/
giab_data_indexes/blob/master/
AshkenazimTrio/alignment.index.
AJtrio_10Xgenomics_
ChromiumGenome_GRCh37_
GRCh38_06202016

http://bit.ly/ncbi-giab-abyss2 ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data/AshkenazimTrio/analysis/
BCGSC_HG004_ABySS2.0_
assemblies_12082016/

http://bit.ly/abyss2-ftp ftp:
//ftp.bcgsc.ca/supplementary/abyss2

27

http://bit.ly/hg004-chromium
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
http://bit.ly/ncbi-giab-abyss2
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/BCGSC_HG004_ABySS2.0_assemblies_12082016/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/BCGSC_HG004_ABySS2.0_assemblies_12082016/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/BCGSC_HG004_ABySS2.0_assemblies_12082016/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/BCGSC_HG004_ABySS2.0_assemblies_12082016/
http://bit.ly/abyss2-ftp
ftp://ftp.bcgsc.ca/supplementary/abyss2
ftp://ftp.bcgsc.ca/supplementary/abyss2

Listing S4 ALLPATHS-LG in_libs.csv
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/allpaths-lg/in_libs.csv
library_name,project_name,organism_name,type,paired,frag_size,frag_stddev,

insert_size,insert_stddev,read_orientation,genomic_start,genomic_end
pe400,giab,hsapiens,fragment,1,400,90,0,0,inward,0,0
mp6k,giab,hsapiens,jumping,1,0,0,6000,1400,outward,0,0

Listing S5 ALLPATHS-LG in_groups.csv
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/allpaths-lg/in_groups.csv
max_rd_len=250

[LIB]
avg_ins=400
asm_flags=3
rank=1
pair_num_cutoff=3
map_len=32
p=D3_S1_L001_001.bfc.fa.gz
p=D3_S1_L001_002.bfc.fa.gz
p=D3_S1_L001_003.bfc.fa.gz
p=D3_S1_L001_004.bfc.fa.gz
...
p=D3_S3_L002_001.bfc.fa.gz
p=D3_S3_L002_002.bfc.fa.gz
p=D3_S3_L002_003.bfc.fa.gz
p=D3_S3_L002_004.bfc.fa.gz

[LIB]
avg_ins=6000
reverse_seq=1
asm_flags=2
rank=2
pair_num_cutoff=5
map_len=35
p=MPHG004-23100079/MPHG004_S3_L003_001.mp.bfc.fa.gz
p=MPHG004-23110109/MPHG004_S3_L003_001.mp.bfc.fa.gz
p=MPHG004-23100079/MPHG004_S3_L003_001.unknown.bfc.fa.gz
p=MPHG004-23110109/MPHG004_S3_L003_001.unknown.bfc.fa.gz

Listing S6 BCALM 2. The largest value of k supported by BCALM 2 is 63.
bcalm -in pe400.in -out hsapiens-unitigs -k 63 -abundance 5 -nb-cores 64
bglue -in hsapiens-unitigs.h5 -out hsapiens-unitigs -k 63

28

https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/allpaths-lg/in_libs.csv
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/allpaths-lg/in_groups.csv

Listing S7 DISCOVAR de novo. Assemble the paired-end reads using DISCO-
VAR de novo and scaffold with ABySS-Scaffold, BESST and LINKS.
DiscovarDeNovo MAX_MEM_GB=750 READS=@pe400.in OUT_DIR=./hsapien
abyss-pe name=hsapiens mp=mp6k j=64 k=200 l=40 s=500 S=500-5000 N=15 \

mp6k_de=--mean mp6k_n=1 mp6k=$(<mp6k+unknown.in) scaffolds
runBESST --orientation rf -c hsapiens-scaffolds.fa -f mp6k.bam -o .
LINKS -f discovar-scaffold.fa -s mpet.fof -d 6000 -k 20 \

-b discovarlinksMPET6K500z -l 10 -t 10 -m 1 -e 0.8 -z 500

Listing S8 MaSuRCA. The script assemble.sh is generated by masurca itself.
./masurca config.txt
./assemble.sh

Listing S9 MaSuRCA config.txt
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/masurca/config.txt
DATA
PE= 01 400 90 D3_S1_L001_R1_001.bfc.fq.gz D3_S1_L001_R2_001.bfc.fq.gz
PE= 02 400 90 D3_S1_L001_R1_002.bfc.fq.gz D3_S1_L001_R2_002.bfc.fq.gz
PE= 03 400 90 D3_S1_L001_R1_003.bfc.fq.gz D3_S1_L001_R2_003.bfc.fq.gz
PE= 04 400 90 D3_S1_L001_R1_004.bfc.fq.gz D3_S1_L001_R2_004.bfc.fq.gz
...
PE= 32 400 90 D3_S3_L002_R1_001.bfc.fq.gz D3_S3_L002_R2_001.bfc.fq.gz
PE= 33 400 90 D3_S3_L002_R1_002.bfc.fq.gz D3_S3_L002_R2_002.bfc.fq.gz
PE= 34 400 90 D3_S3_L002_R1_003.bfc.fq.gz D3_S3_L002_R2_003.bfc.fq.gz
PE= 35 400 90 D3_S3_L002_R1_004.bfc.fq.gz D3_S3_L002_R2_004.bfc.fq.gz
JUMP= m1 6000 1400 MPHG004-23100079/MPHG004_S3_L003_R1_001.fastq.gz \

MPHG004-23100079/MPHG004_S3_L003_R2_001.fastq.gz
JUMP= m2 6000 1400 MPHG004-23110109/MPHG004_S3_L003_R1_001.fastq.gz \

MPHG004-23110109/MPHG004_S3_L003_R2_001.fastq.gz
END

PARAMETERS
GRAPH_KMER_SIZE = auto
USE_LINKING_MATES = 1
LIMIT_JUMP_COVERAGE = 300
CA_PARAMETERS = cgwErrorRate=0.15 ovlMemory=4GB
KMER_COUNT_THRESHOLD = 1
NUM_THREADS = 64
JF_SIZE = 200000000
DO_HOMOPOLYMER_TRIM = 0
END

Listing S10 MEGAHIT. The variable $pe400 is the list of paths to the BFC-
corrected, interleaved, and gzipped paired-end FASTQ files.
megahit --12 $pe400 --verbose -t 64 --k-list 17,45,73,101,129,157,185,213,241

29

https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/masurca/config.txt

Listing S11 Minia. The largest value of k supported by Minia is 128.
minia -in pe400.in -abundance-min auto -kmer-size 128 -nb-cores 64

Listing S12 SGA
sga preprocess --pe-mode=2 hsapiens.fa.gz >hsapiens.preprocess.fa
sga index -t 64 -a ropebwt hsapiens.preprocess.fa
sga filter -t 64 hsapiens.preprocess.fa
sga fm-merge -t 64 -m 125 hsapiens.preprocess.filter.pass.fa
sga index -d 1000000 -t 64 hsapiens.preprocess.filter.pass.merged.fa
sga rmdup -t 64 hsapiens.preprocess.filter.pass.merged.fa
sga overlap -t 64 -m 125 hsapiens.preprocess.filter.pass.merged.rmdup.fa
sga assemble -m 125 -o hsapiens hsapiens.preprocess.filter.pass.merged.rmdup.asqg.gz

Listing S13 SOAPdenovo2
SOAPdenovo-127mer all -K 95 -R -p 64 -s hsapiens.config

30

Listing S14 SOAPdenovo2 hsapiens.config
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/soapdenovo/hsapiens.
config
max_rd_len=250

[LIB]
avg_ins=400
asm_flags=3
rank=1
pair_num_cutoff=3
map_len=32
p=D3_S1_L001_001.bfc.fa.gz
p=D3_S1_L001_002.bfc.fa.gz
p=D3_S1_L001_003.bfc.fa.gz
p=D3_S1_L001_004.bfc.fa.gz
...
p=D3_S3_L002_001.bfc.fa.gz
p=D3_S3_L002_002.bfc.fa.gz
p=D3_S3_L002_003.bfc.fa.gz
p=D3_S3_L002_004.bfc.fa.gz

[LIB]
avg_ins=6000
reverse_seq=1
asm_flags=2
rank=2
pair_num_cutoff=5
map_len=35
p=MPHG004-23100079/MPHG004_S3_L003_001.mp.bfc.fa.gz
p=MPHG004-23110109/MPHG004_S3_L003_001.mp.bfc.fa.gz
p=MPHG004-23100079/MPHG004_S3_L003_001.unknown.bfc.fa.gz
p=MPHG004-23110109/MPHG004_S3_L003_001.unknown.bfc.fa.gz

Listing S15 BioNano hybridScaffold.pl
hybridScaffold.pl -n hsapiens-scaffolds.fa -b EXP_REFINEFINAL1_q.cmap \

-c hybridScaffold_config_aggressive.xml -B2 -N2 -o bionano \
-x -y -m all.bnx -q optArguments_human.xml -e AJmother_autoNoise1.err

Listing S16 ARCS. The script makeTSVfile.py is available online at https:
//github.com/sarahyeo/giab.
arcs -f hsapiens-scaffolds.fa -a human-alignments.fof \

-s 98 -g 50000 -c 5 -l 5 -m 50-1000 -d 0 -e 30000 -i 16 -v 1
python makeTSVfile.py hsapiens-scaffolds.fa.scaff_s98_c5_original.gv \

human_c5.tigpair_checkpoint.tsv hsapiens-scaffolds.fa
LINKS -f hsapiens-scaffolds.fa -s empty.fof -b human_c5 -l 5 -a 0.3

31

https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/soapdenovo/hsapiens.config
https://github.com/bcgsc/abyss-2.0-giab/blob/1.0/soapdenovo/hsapiens.config
https://github.com/sarahyeo/giab
https://github.com/sarahyeo/giab

	Effect of Bloom Filter False Positive Rate
	Assembler Comparison Details
	Sealer Gap Filling Results
	Sequence Identity and Genome Coverage
	K-mer Size Sweeps
	Additional Benchmarking of ABySS
	Assemblies with Raw and BFC-corrected Reads
	Software
	Assembler Scripts and Configuration Files

	Shortened URLs from the Main Text

