
Sockeye How-to: Adding or Editing New Sockeye Features
Authors: Stephen Montgomery / Gordon Robertson
Date: Jan 15th, 2004

IS THIS DOCUMENT FOR YOU:
� You have a new type of feature that you want to display in Sockeye
� The default organization of Sockeye features does not appeal to you

OUTLINE:
� This document will show a user how to edit or add new Sockeye features

(A feature is a 3D object that represents an element of annotation in the
Sockeye universe. For instance, by default, a gene feature is an orange
cyclinder and an exon feature is a green cylinder).

Figure 1: The huntington disease protein in Sockeye. An orange cyclinder represents a
gene and the green cyclinders demarcate exons. Only the part of chromosome 4 that
contains the HD-1 protein is being shown on this Sockeye track (blue plane).

HOW TO ADD OR EDIT A FEATURE:
1. All the features (3D objects) that are displayed in Sockeye are loaded from VRML

files. (VRML: Virtual Reality Modelling Language). Unfortunately, VRML comes in
more than one flavor and it is so powerful that it can define an entire 3D environment.
While this is useful in some contexts, in Sockeye it would be confusing to have the
environment change everytime someone loaded a new feature. To remedy this we
only use very simple VRML files that describe 3D objects and that do not manipulate

the environment in Sockeye.

TO VIEW YOUR 3D MODEL FILES:
1. Go to your Sockeye directory
2. Go to /resources/models/
3. Here you will see all the 3D models that are used to make the default

features in Sockeye. They all have a WRL file extension. They are text-
based so if you feel like opening them, you can.

2. All of the features that Sockeye displays are dynamically loaded from a configuration
file. This allows incredible flexibility for customizing Sockeye to your particular data.

TO VIEW YOUR FEATURE CONFIGURATION FILE:
1. Go to your Sockeye directory
2. Open your user_config.xml file
3. You are looking at an XML document that configures your Sockeye

application.

3. Somewhere in your user_config.xml file
you will encounter a group of XML tags called
<feature>. These tags are responsible for
defining the 3D properties of a given class of
feature and their relationship within the feature
tree. Without these tags, there would be nothing
displayed in Sockeye's 3D environment or on the
feature tree.

Figure 2: The Feature Tree

AN EXAMPLE OF A <feature>TAG

<feature>
<name>exon</name>
<parentName>gene</parentName>
<display>

<color>0 170 0</color>
<hcolor>140 200 160</hcolor>
<shape>cylinder.WRL</shape>
<transparency>0</transparency>
<zoffset>0</zoffset>
<halfheight>false</halfheight>
<yoffset>0.1</yoffset>
<strandoffset>true</strandoffset>
<width>0.3</width>
<thickness>0.3</thickness>
<scoredthickness>false</scoredthickness>
<orientation>1</orientation>
<scaleable>true</scaleable>
<length>0.</length>
<alignment>center</alignment>
<collision>true</collision>

</display>
</feature>

4. What does each tag mean?

1.name
type: String
E.g. gene, exon, Nucleocapsid protein

2.parentName
type: String
Set to another feature name to have the current feature displayed as a
'child' node under the 'parentName' node. Used to build the Feature Tree.
E.g. exon under gene, Nucleocapsid protein under gff_features.
IMPORTANT NOTE: A child feature inherits all the properties of the
parent feature. So you are only required to specify the tags which have
changed between the parent and the child.

Feature display parameters

Figure 3: The Sockeye coordinate system

3.color
type: integer [space] integer [space] integer
Set an RGB colour by giving three integers between 0 and 255.

4.hcolor
type: integer [space] integer [space] integer
Set an RGB highlight colour by giving three integers between 0 and 255.
Only defined for exons. Used for persistent highlighting of exons for
alternative transcripts. All other features use an internally defined transient
highlight colour that does not need to be defined in the XML file.

5.shape
type: String
E.g. cylinder.WRL, cube.WRL, cone.WRL,...
Choose a VRML shape file from Sockeye's /resources/models
directory.
You may be able to use VRML files that were not supplied with Sockeye,
but such files may be incompatible and so are not supported.

6.transparency
type: decimal number
Set a number between 0.0 (opaque) and 1.0 (completely transparent).

7.halfheight
type: true / false
Set to true to make a feature stand on the 3D platform.
Typically such a feature will have a score, e.g. a degree of similarity
between sequence regions, or an expression level.
Some unscored features may also stand on the platform.
Set to false if the feature should use ������������	 .

8.zoffset
type: decimal number
fraction of the display track width.
The positive Z axis is shown in the coordinate system above.
Set the height of the centre of the feature above the surface of the
platform.
Ignored if halfheight is true.

9.strandoffset
type: true / false
Set to true if the feature's data will include a strand indicator (e.g. + or -)
that will be used to offset the 3D feature to its strand's side of the display
track centreline.

Set the actual offset distance by yoffset.
A feature can be offset outside of the genomic strands by a larger offset.
If a feature is given a nonzero yoffset but strandoffset is false, its
offset will be fixed, and will not depend on strand (e.g. Homologue).

10.yoffset
type: decimal number
fraction of the display track half-width
The positive Y axis is shown in the coordinate system above.
Set the distance across the platform that the feature's centre is offset from
the display track centre.
Can be positive, zero or negative, but negative cases will probably want
strandoffset to be true.

11.width
type: decimal number
fraction of the display track half-width
Set the displayed width of the 3D feature.

12.thickness
type: decimal number
fraction of the display track half-width
Set the displayed height of the 3D feature.
To give a feature a symmetric cross-section (e.g. cylinder, sphere, cone),
the width and thickness should be equal.

13.scoredthickness
type: true (default) / false
Set to true if the feature's thickness should be scaled when it has a score.
Set to false if a feature should not be scaled even if it has a score (say, a
'gene' in a GFF file).

14.orientation
type: integer
Controls how the axes of a VRML shape are oriented relative to the axes
of the platform, e.g. whether a VRML shape will be displayed with its
long axis parallel to the platform's X- or the Y-axis.
When strandoffset=true and orientation=1, a feature will
have opposite display orientations on opposite strands.

15.scaleable
type: true / false
Set to true if the feature should be scaled by its genomic start and end
coordinates (e.g. gene, exon, transcript,...), and length and alignment
should be ignored .

Set to false if the feature should be displayed with a constant length and a
controlled alignment.

16.length
type: decimal
fraction of display track width.
If scaleable is false, set the (constant) display length for the feature
(e.g.forward_primer).
Ignored if scaleable is true (e.g. Gene).

17.alignment
type: left / centre / right
If scaleable is false, set how the feature should be located relative to
the genomic region specified by its start and end coordinates (e.g.
forward_primer).
centre - centre of 3D feature = centre of Start/End region.
left - for a feature on the + strand, the 5' end of the 3D feature will be at
the Start coordinate; for the - strand, the 3' end will be at the End
coordinate
right - for a feature on the + strand, the 3' end of the 3D feature will be at
the End coordinate; for the - strand, the 5' end will be at the Start
coordinate
Ignored if scaleable is true (e.g. Gene).

18.Collision
type: true/false
Allows for Java3D-based collision detection of features. If two features
are colliding, one is moved vertically upwards. Experimental as Java3D
doesn't work well in multiple collision situations.

5. For a template see the feature named default in your user_config.xml file

WHAT THIS MEANS FOR YOUR GFF FILES
1. If you have been using GFF files to import your data into Sockeye. It

probably hasn't been very descriptive about what feature is what. By
describing your features using different colors and shapes, you can very
simply create a rich viewing environment for your information.

EXAMPLE:
Sample GFF Data
SARS-Associated BCGSC Replicase 1A 250 13398 100 + .
SARS-Associated BCGSC Replicase 1B 13395 21467 100 + .
SARS-Associated BCGSC S (Spike) Glycoprotein 21477 25244 100 + .

SARS-Associated BCGSC E (SM) protein 26102 26332 100 + .

Define <feature> tags for Replicase 1A, Replicase 1B, S (Spike) Glycoprotein, etc.
 <feature>
 <name>spike glycoprotein</name>
 <parentName>SARS annotation</parentName>
 <color>140 23 215</color>
 <Yoffset>0.3</Yoffset>
 <text>default_20</text>
 </feature>

 <feature>
 <name>replicase 1AB</name>
 <parentName>SARS annotation</parentName>
 <color>120 120 120</color>
 <Yoffset>0.9</Yoffset>
 <text>default_20</text>
 </feature>

Create detailed pictures

Figure 5: Sockeye picture of SARS virus on cover of Linux Journal

For more information on this topic contact sockeye@bcgsc.bc.ca.

