
Genome-wide mapping of protein–DNA interactions 
and epigenetic marks is essential for a full understanding  
of transcriptional regulation. A precise map of bind-
ing sites for transcription factors, core transcriptional 
machinery and other DNA-binding proteins is vital for 
deciphering the gene regulatory networks that under-
lie various biological processes1. The combination of 
nucleosome positioning and dynamic modification 
of DNA and histones has a key role in gene regula-
tion2–4 and guides development and differentiation5. 
Chromatin states can influence transcription directly 
by altering the packaging of DNA to allow or prevent 
access to DNA-binding proteins, or they can modify the 
nucleosome surface to enhance or impede recruitment 
of effector protein complexes. Recent advances suggest 
that this interplay between chromatin and transcription 
is dynamic and more complex than previously appreci-
ated6, and there is a growing recognition that systematic 
profiling of the epigenomes in multiple cell types and 
stages may be needed for understanding developmental 
processes and disease states7.

The main tool for investigating these mechanisms 
is chromatin immunoprecipitation (ChIP), which is a 
technique for assaying protein–DNA binding in vivo8. 
In ChIP, antibodies are used to select specific proteins 
or nucleosomes, which enriches for DNA fragments 
that are bound to these proteins or nucleosomes. The 
introduction of microarrays allowed the fragments 
obtained from ChIP to be identified by hybridiza-
tion to a microarray (ChIP–chip), therefore enabling 

a genome-scale view of DNA–protein interactions9,10. 
On high-density tiling arrays, oligonucleotide probes 
can now be placed across an entire genome or across 
selected regions of a genome — for instance, promoter 
regions, specific chromosomes or gene families — at a  
preferred resolution.

Owing to the rapid technological developments 
in next-generation sequencing (NGS), the arsenal of 
genomic assays available to the biologist has been trans-
formed11–13. The ability to sequence tens or hundreds 
of millions of short DNA fragments in a single run is 
enabling increasingly large experiments that could only 
be imagined a few years ago. Next-generation sequenc-
ing has already been applied in many areas, including 
the sequencing of whole genomes14,15, the sequencing of 
mRNA for gene expression profiling (RNA–seq)16–18, the 
characterization of structural variation19, the profiling 
of DNase I hypersensitive sites20, the detection of fusion 
genes from mRNA transcripts21 and the discovery of 
new classes of small RNAs22. If the ‘third-generation’ 
sequencing technologies that are under development 
deliver as promised, they will lead to another epoch of 
genome-scale investigations23.

Chromatin immunoprecipitation followed by 
sequencing (ChIP–seq) was one of the early applications 
of NGS, and the first studies to use it were published in 
2007 (REFS 24–27). In ChIP–seq, the DNA fragments of 
interest are sequenced directly instead of being hybrid-
ized on an array. ChIP–seq has higher resolution, fewer 
artefacts, greater coverage and a larger dynamic range 
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Nucleosome
The basic structural subunit of 
chromatin. A nucleosome 
consists of approximately 147 
base pairs of DNA and an 
octamer of histone proteins.

Epigenome
The chromatin states that are 
found along the genome, 
defined for a given time point 
and cell type. Thus, for a given 
genome there may be hundreds 
or thousands of epigenomes, 
depending on the stability of 
the chromatin states.

DNase I hypersensitive site
A chromosomal region that is 
highly accessible to cleavage 
by DNase I. Such sites are 
associated with open 
chromatin conformations and 
transcriptional activity.

ChIP–seq: advantages and challenges 
of a maturing technology
Peter J. Park

Abstract | Chromatin immunoprecipitation followed by sequencing (ChIP–seq) is a 
technique for genome-wide profiling of DNA-binding proteins, histone modifications or 
nucleosomes. Owing to the tremendous progress in next-generation sequencing 
technology, ChIP–seq offers higher resolution, less noise and greater coverage than its 
array-based predecessor ChIP–chip. With the decreasing cost of sequencing, ChIP–seq 
has become an indispensable tool for studying gene regulation and epigenetic 
mechanisms. In this Review, I describe the benefits and challenges in harnessing this 
technique with an emphasis on issues related to experimental design and data analysis. 
ChIP–seq experiments generate large quantities of data, and effective computational 
analysis will be crucial for uncovering biological mechanisms.

 A P P L I C AT I O N S  O F  N E X T- G E N E R AT I O N  S E Q U E N C I N G

REVIEWS

NATURE REVIEWS | GENETICS  VOLUME 10 | OCTOBER 2009 | 669

mailto:peter_park@harvard.edu


Bivalent domain
A region of chromatin marked 
by a histone modification 
associated with active 
transcription (histone H3 lysine 
4 trimethylation) and a 
modification associated with 
repression (histone H3 lysine 
27 trimethylation). It is 
postulated to mark genes that 
are silent but poised for 
transcription.

Imprinting
The differential expression of 
genes depending on whether 
they were inherited maternally 
or paternally.

than ChIP–chip and therefore provides substantially 
improved data. Although the short reads (~35 bp) gen-
erated by NGS platforms pose serious difficulties for 
certain applications — for example, de novo genome 
assembly — they are acceptable for ChIP–seq. The more 
precise mapping of protein-binding sites provided by 
ChIP–seq allows for a more accurate list of targets for 
transcription factors and enhancers, in addition to better 
identification of sequence motifs24,28. Enhanced spatial 
resolution is particularly important for profiling histone 
variants, post-translational modifications of chromatin 
and nucleosome positioning, and ChIP–seq has enabled 
tremendous progress in these areas (BOX 1).

In this Review, I describe the advantages and chal-
lenges in applying ChIP–seq. I discuss various issues in 
experimental design, including sample quality, controls, 
depth of sequencing and the number of replicates. Given 
the large quantities of data generated by ChIP–seq, 
computational analysis — including the identification 
of binding sites and their subsequent analysis — poses 
a substantial challenge for most laboratories; therefore 
I also discuss the main issues in data processing and 
statistical analysis.

ChIP–seq basics
In a ChIP experiment for DNA-binding proteins, DNA 
fragments associated with a specific protein are enriched 
(FIG. 1). The DNA-binding protein is crosslinked to DNA 
in vivo by treating cells with formaldehyde and the chro-
matin is sheared by sonication into small fragments, 
which are generally in the 200–600 bp range. An anti-
body specific to the protein of interest is used to immu-
noprecipitate the DNA–protein complex. Finally, the 
crosslinks are reversed and the released DNA is assayed 
to determine the sequences bound by the protein.

In ChIP experiments that aim to map nucleosome 
positions or histone modifications, micrococcal nuclease 
(MNase) digestion without crosslinking is most often 
used to fragment the chromatin. Although sonication 
has also been used in this context29, MNase treatment is 
generally preferred because it removes linker DNA more  
efficiently than sonication and therefore allows  
more precise mapping of each nucleosome30. However, 
MNase digestion has a more pronounced sequence bias 
than sonication31, and the solubility of chromatin also 
creates bias32. There may also be changes in nucleosome 
positions and histone modifications during the course 
of the experiment in the absence of crosslinking. ChIP 
with and without crosslinking is sometimes referred 
to as X-ChIP33 and N-ChIP34, respectively, in which X 
denotes ‘crosslinking’ and N denotes ‘native’.

During the construction of a sequencing library, the 
immunoprecipitated DNA is subjected to size selection 
(typically in the ~150–300 bp range, although there 
seems to be a bias towards shorter fragments in sequenc-
ing). Nearly all ChIP–seq data have been generated 
through the Illumina Genome Analyzer, although other 
platforms, such as Applied Biosystems’ SOLiD and the 
Helicos platform, are now available (FIG. 1). The Genome 
Analyzer and SOLiD platforms currently generate  
100–400 million reads in a single run, and ~60–80% of 
reads can be aligned uniquely to the genome.

Advantages and disadvantages of ChIP–seq
ChIP–seq offers many advantages over ChIP–chip, as 
summarized in TABLE 1 (see also REF. 35). First, its base 
pair resolution is perhaps the greatest improvement over 
ChIP–chip, as shown in FIG. 2a. Although arrays can be 
tiled at a high density, this requires a large number of 
probes and remains expensive for mammalian genomes36. 
Arrays also have fundamental limitations in resolution 
due to the uncertainties in the hybridization process. 
Second, ChIP–seq does not suffer from the noise gener-
ated by the hybridization step in ChIP–chip. Nucleic acid 
hybridization is complex and dependent on many factors,  
including the GC content, length, concentration and 
secondary structure of the target and probe sequences. 
Therefore, cross-hybridization between imperfectly 
matched sequences frequently occurs and contributes to 
the noise. Third, the intensity signal measured on arrays 
might not be linear over its entire range, and its dynamic 
range is limited below and above saturation points. In 
a recent study, distinct and biologically meaningful 
peaks seen in ChIP–seq were obscured when the same 
experiment was conducted with ChIP–chip37. Finally, in 

 Box 1 | The contribution of ChIP–seq to epigenome mapping

The enhanced spatial resolution afforded by next-generation sequencing improves 

the characterization of binding sites for transcription factors and other 

DNA-binding proteins and enables the identification of sequence motifs. The 

increased precision is especially important for profiling nucleosome-level features, 

and it allows the systematic cataloguing of patterns of histone modifications, 

histone variants and nucleosome positioning. Here, I briefly describe recent 

chromatin immunoprecipitation (ChIP) studies that have enabled progress in the 

characterization of epigenomes.

Histone modification maps
The first comprehensive genome-wide maps produced through ChIP followed by 

sequencing (ChIP–seq) were created in 2007. Twenty histone methylation marks, as 

well as the histone variant H2A.Z, RNA polymerase II and the DNA-binding protein 

CTCF (CCCTC-binding factor), were profiled using the Solexa 1G platform in human 

T cells25 with an average of ~8 million tags per sample. This was followed by a map of 

18 histone acetylation marks in the same cell type90. These studies suggested novel 

functions for histone modification and the importance of combinatorial patterns of 

modifications. To examine the role of histone modifications in differentiation, 

embryonic stem cells have also been profiled. Several histone lysine trimethylation 

modifications were profiled in mouse embryonic stem cells and two types of 

differentiated cells in 2007 (REF. 27). This study showed that bivalent domains91 have 

a role in lineage potential and identified marks for imprinting control. Before 

ChIP–seq, genome-wide modification profiles were available for yeast using tiling 

arrays92–94, but only selected regions had been profiled for mice and humans  

(see REF. 35 for further descriptions of the techniques used).

Nucleosome maps
Using ChIP followed by microarray (ChIP–chip), nucleosome depletion at active 

promoters in yeast was described in 2004 (REF. 95). This was followed by a 

high-resolution study96 in 2005 and a complete map of nucleosome positioning97  

in 2007. In Caenorhabditis elegans, micrococcal nuclease digestion followed by 

sequencing was used in 2006 to map core nucleosomes98. ChIP–seq with Roche 454 

pyrosequencing was used to generate a map of the histone variant H2A.Z in yeast99 

in 2007 and in flies100 in 2008. For human cells, epigenetically modified and bulk 

mono-nucleosome positions were profiled for T cells in 2007 and 200825,30,90 with 

>140 million reads per experiment using the Illumina Solexa platform (reviewed in 

REF. 2). These studies have revealed the role of nucleosomes in transcriptional 

regulation and hint at the principles that guide nucleosome positioning.
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 10 | OCTOBER 2009 | 671



Table 1 | Comparison of ChIP–chip and ChIP–seq

ChIP–chip ChIP–seq

Maximum resolution Array-specific, generally 30–100 bp Single nucleotide

Coverage Limited by sequences on the array; repetitive regions are 
usually masked out

Limited only by alignability of reads to the genome; increases 
with read length; many repetitive regions can be covered

Cost US$400–800 per array (1–6 million probes);  
multiple arrays may be needed for large genomes

Currently US$1,000–2,000 per lane (using the Illumina 
Genome Analyzer); 6–15 million reads before alignment

Source of platform noise Cross-hybridization between probes and nonspecific 
targets

Some GC bias can be present

Experimental design Single- or double-channel, depending on the platform Single channel

Cost-effective cases Profiling of selected regions; when a large fraction of  
the genome is enriched for the modification or protein  
of interest (broad binding)

Large genomes; when a small fraction of the genome is 
enriched for the modification or protein of interest  
(sharp binding)

Required amount of  
ChIP DNA

High (a few micrograms) Low (10–50 ng)

Dynamic range Lower detection limit; saturation at high signal Not limited

Amplification More required Less required; single-molecule sequencing without 
amplification is available

Multiplexing Not possible Possible

Microsatellite
A class of repetitive DNA that 
is made up of repeats that are 
2–8 nucleotides in length.

RNA interference
The process by which the 
introduction or expression 
within cells of single- or 
double-stranded RNA leads to 
the degradation of mRNA and 
therefore to gene suppression.

of a specific antibody. Rigorous validation is a laborious 
process: for histone modifications for instance, the reac-
tivity of the antibody with unmodified histones or non-
histone proteins should be checked by western blotting. 
Furthermore, cross-reactivity with similar histone modi-
fications (for example, dimethylation compared with tri-
methylation at the same residue) should be checked by 
using two independent antibodies in combination with 
RNA interference against enzymes that are predicted to 
add the modifying group or with mass spectrometry of 
the precipitated peptides. As part of the model organ-
ism ENCyclopedia Of DNA Elements (modENCODE) 
project41, I have been involved in the large-scale profiling 
of histone modifications for Drosophila melanogaster, 
and the antibody validation procedure for this project 
(which uses the steps described above) has resulted in 
the finding that 20–35% of the commercially produced 
antibodies tested were unsatisfactory.

Sample quantity. One advantage of ChIP–seq over  
ChIP–chip is the smaller amount of sample material 
needed. A typical ChIP experiment requires ~107 cells 
and yields 10–100 ng of DNA. Several ChIP protocols 
have been developed that use smaller numbers of cells — 
for example, 104–105 cells for genome-wide profiling42 or 
102–103 cells for PCR quantification at specific loci43–45 — 
but to work they require abundant transcription factors or  
histone modifications (such as RNA polymerase II  
or histone H3 trimethylated at lysine 27 (H3K27me3)) 
and a high-quality antibody. For ChIP–chip, the ChIP 
sample is usually amplified to generate >2 μg of DNA per 
array. By contrast, for ChIP–seq on the Illumina platform, 
10–50 ng of DNA is recommended. Furthermore, fewer 
rounds of amplification are required for ChIP–seq, so the 
potential for artefacts due to PCR bias is lower. The pre-
cise amount of ChIP DNA and the number of cells needed 
depend on the abundance of the chromatin-associated 
protein targets or histone modifications, in addition to 

the quality of the antibody. ChIP–seq without amplifi-
cation is possible on the Helicos True Single Molecule 
Sequencing platform46 and other ‘third-generation’  
platforms that are in development (FIG. 1).

Control experiment. The experimental steps in ChIP 
involve several potential sources of artefacts. Shearing 
of DNA, for example, does not result in uniform frag-
mentation of the genome: open chromatin regions tend 
to be fragmented more easily than closed regions, which 
creates an uneven distribution of sequence tags across 
the genome. Also, repetitive sequences might seem to be 
enriched because of inaccuracies in the number of copies 
of the repeats in the assembled genome. Therefore, a peak 
in the ChIP–seq profile should be compared with the 
same region in a matched control sample to determine 
its significance. There are three commonly used types of 
control sample: input DNA (a portion of the DNA sam-
ple removed prior to immunoprecipitation (IP)); mock 
IP DNA (DNA obtained from IP without antibodies); 
and DNA from nonspecific IP (IP performed using an 
antibody, such as immunoglobulin G, against a protein 
that is not known to be involved in DNA binding or 
chromatin modification). These types of control sample 
test for different types of artefacts, and there is no con-
sensus on which is the most appropriate. Input DNA has 
been used as the control sample in nearly all ChIP–seq 
studies; comparison with input DNA corrects for bias 
related to the variable solubility of different regions, the 
shearing of DNA and amplification. One problem with 
using a mock IP sample is that very little material can be 
pulled down in the absence of an antibody and therefore 
the results of multiple mock IPs may not be consistent. 
In one set of ChIP–chip experiments, the mock IP con-
trol was found to contribute little to the overall result  
when the data were properly normalized47. When analys-
ing histone modifications, using the ratio between data 
from the ChIP sample and from the bulk nucleosomes is 
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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Figure 3 | Depth of sequencing. A | To determine whether enough tags have been sequenced, a simulation can be 
carried out to characterize the fraction of the peaks that would be recovered if a smaller number of tags had been 
sequenced. In many cases, new statistically significant peaks are discovered at a steady rate with an increasing number 
of tags (solid curve) — that is, there is no saturation of binding sites. However, when a minimum threshold is imposed for 
the enrichment ratio between chromatin immunoprecipitation (ChIP) and input DNA peaks, the rate at which new 
peaks are discovered slows down (dashed curve) — that is, saturation of detected binding sites can occur when only 
sufficiently prominent binding positions are considered. For a given data set, multiple curves corresponding to 
different thresholds can be examined to identify the threshold at which the curve becomes sufficiently flat to meet the 
desired saturation criteria (defined by the intersection of the orange lines on the graph). We refer to such a threshold as 
the minimum saturation enrichment ratio (MSER). The MSER can serve as a measure for the depth of sequencing 
achieved in a data set: a high MSER, for example, might indicate that the data set was undersampled, as only the more 
prominent peaks were saturated (see REF. 48 for details). Ba | A peak that is not statistically significant — the 
enrichment ratio between the ChIP and control experiments is low (1.5) and the number of tag counts (shown under 
the peaks) is also low. Bb | Two ways in which a peak can be statistically significant. On the left, although the number of 
tag counts is low, the enrichment ratio between the ChIP and control experiments is high (4). On the right, the peaks 
have the same enrichment ratio as those in a but have a larger number of tag counts; this example shows that 
continued sequencing might lead to less prominent peaks becoming statistically significant and that there might not 
necessarily be a saturation point after which no further binding sites are discovered.

more and more sites continued to be found at a steady 
pace with additional sequencing (FIG. 3A, lower curve). 
In another study38, human RNA polymerase II targets 
were shown to saturate quickly, but for signal transducer 
and activator of transcription 1 (STAT1), the number 
of targets continued to rise steadily. This suggests that, 
at least in some cases, there might not be a satura-
tion point that can be used to determine the number 
of tags to be sequenced if peaks are found based on  
statistical significance.

However, a saturation point does exist if a fixed 
threshold is imposed on the fold enrichment between 
the peaks in the ChIP experiment and the peaks in the  
control experiment — that is, saturation occurs when 
only prominent peaks (as defined by minimum fold 
enrichment) are considered. When all peaks are  
considered, even peaks with small enrichment can 
become statistically significant as more tags accumulate  
(FIG. 3B) and therefore the number of significant peaks 
may continue to rise with more sequencing. This is  
similar to what happens in genome-wide association 
studies and other genomic investigations in which a 

large sample size increases the statistical power and 
causes features that have small effect sizes to attain sta-
tistical significance. In the study discussed above48, we 
proposed that each ChIP–seq data set could be anno-
tated with a minimal saturated enrichment ratio (MSER) 
— a point at which saturation occurs — to give a sense 
of the sequencing depth achieved. We also found that 
there is a linear relationship between the number of 
reads and the MSER, when properly scaled. This makes 
it possible to predict how many more reads are needed 
when a particular level of MSER is desired. Although 
these concepts and tools should be tested on more 
data sets, they provide a framework for understanding  
depth-of-sequencing issues in ChIP–seq experiments.

Multiplexing. For small genomes, including those of 
Saccharomyces cerevisiae, Caenorhabditis elegans and 
D. melanogaster, the number of reads generated in 
a sequencing unit (for example, one of eight lanes on 
an Illumina Genome Analyzer) may be several times 
greater than the number of reads needed to provide 
sufficient coverage of the genome at a suitable depth 
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Figure 4 | Overview of ChIP–seq analysis. The raw data for chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) analysis are images from the 
next-generation sequencing platform (top left). A base caller converts the image data 
to sequence tags, which are then aligned to the genome. On some platforms, they are 
aligned with the aid of quality scores that indicate the reliability of each base call. 
Peak calling, using data from the ChIP profile and a control profile (which is usually 
created from input DNA), generates a list of enriched regions that are ordered by false 
discovery rate as a statistical measure. Subsequently, the profiles of enriched regions 
are viewed with a browser and various advanced analyses are performed.

for the ChIP–seq experiment. As the number of reads 
per run continues to increase, the ability to sequence 
multiple samples at the same time (referred to as ‘mul-
tiplexing’) becomes important for cost effectiveness. In  
theory, multiplexing of samples is not difficult and only 
requires different barcode adaptors to be ligated to dif-
ferent samples during sample preparation. Even allowing 
for sequencing errors, a few bases are sufficient to serve 
as unique identifiers for many samples. In practice, how-
ever, multiplexing has not been widely used so far on the 
Illumina platform owing to uneven coverage of the sam-
ples and other technical problems. However, some recent 
protocols show promise49, and multiplexing is likely to 
be used frequently in the future.

Additional considerations. Although ChIP fragments  
are generally sequenced at the 5  ends, they can also 
be sequenced at both ends, as is frequently done for 
detection of structural variations in the genome19. 
Paired-end sequencing can be used in conjunction with 
ChIP to provide additional specificity (especially when 
mapping repetitive regions) and to map long-range  
chromatin interactions50.

ChIP experiments should be replicated to ensure 
reproducibility of the data. For microarrays, platforms 
and protocols have improved substantially so that  
replicate experiments using the same samples are 

generally no longer needed. Although this is likely to 
become the case for ChIP–seq51, replicate experiments 
are still recommended to account for variation between 
samples and to verify the fidelity of experimental  
steps. Assuming that they are sequenced deeply, two 
concordant replicate experiments are usually sufficient, 
as a third replicate seems to add little value38.

Challenges in data analysis
As NGS platforms and ChIP–seq protocols mature, data 
generation is gradually becoming routine, and the limit-
ing factor in a study is shifting to computational analysis 
of the data and to validation experiments. In this sec-
tion, I discuss the key issues and concepts involved in 
data analysis. These concepts underpin a much wider 
range of ChIP–seq analysis techniques, which are too 
varied and complex to be discussed in this review. A 
flow chart of the steps involved in ChIP–seq analysis is  
shown in FIG. 4.

Data management. Next-generation sequencing  
produces an unprecedented amount of data. Raw data 
and images are on the order of terabytes per machine 
run, which makes data storage a challenge even for facili-
ties with considerable expertise in the management of 
genomic data. Data can be stored at three levels: image 
data, sequence tags and alignment data. Ideally, the raw 
image data should be kept so that if a new base caller is 
developed the raw data can be reprocessed. Sequence 
tags can be used to map the data when an improved 
aligner is available or when a reference genome assembly 
is updated. Alignment data can be useful for generating 
summary statistics and can be used to generate SNP or 
copy number variation calls. There is no consensus in 
the community with regard to which data types should 
be stored, but many argue that the image data are too 
expensive to maintain and that a reasonable approach is 
to discard the raw data after a short period of time and 
keep only the sequence-level data.

In microarray-based studies, investigators are 
encouraged, and often required, to submit their data 
upon publication to a public database, such as Gene 
Expression Omnibus52. For NGS data, data transfer and 
maintenance are more complicated owing to the large 
file sizes. Depositing data through standard FTP or 
HTTP protocols, for instance, is likely to fail when many 
gigabytes are to be uploaded. To meet this challenge, the 
National Center for Biotechnology Information in the 
US, the European Bioinformatics Institute and the DNA 
Databank of Japan have developed the Sequence Read 
Archive53,54. To ensure that the archive is useful to the 
community, meta-data describing the details of each 
experiment should be submitted to the repositories at 
the same time as the sequencing data.

Genome alignment. Image processing and base calling  
are platform specific and are mostly done using the 
software provided by the sequencing platform manu-
facturer, although some new base callers have been 
proposed recently 55,56 for the Illumina platform. 
More important is the choice of strategy for genome 
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alignment, as all subsequent results are based on the 
aligned reads. Owing to the large number of reads, the 
use of conventional alignment algorithms can take hun-
dreds or thousands of processor hours; therefore, a new 
generation of aligners has been developed57, and more 
are expected soon. Every aligner is a balance between 
accuracy, speed, memory and flexibility, and no aligner 
can be best suited for all applications. Alignment for 

ChIP–seq should allow for a small number of mis-
matches due to sequencing errors, SNPs and indels or 
the difference between the genome of interest and the 
reference genome. This is simpler than in RNA–seq, 
for example, in which large gaps corresponding to 
introns must be considered. Popular aligners include: 
Eland, an efficient and fast aligner for short reads that 
was developed by Illumina and is the default aligner on 
that platform; Mapping and Assembly with Qualities 
(MAQ)58, a widely used aligner with a more exhaustive 
algorithm and excellent capabilities for detecting SNPs; 
and Bowtie59, an extremely fast mapper that is based 
on an algorithm that was originally developed for file 
compression. These methods use the quality score that 
accompanies each base call to indicate its reliability. For 
the SOLiD di-base sequencing technology, in which two 
consecutive bases are read at a time, modified aligners 
have been developed60,61. Many current analysis pipe-
lines discard non-unique tags, but studies involving the 
repetitive regions of the genome27,62–64 require careful 
handling of these non-unique tags.

Identification of enriched regions. After sequenced 
reads are aligned to the genome, the next step is to iden-
tify regions that are enriched in the ChIP sample relative 
to the control with statistical significance.

Several ‘peak callers’ that scan along the genome 
to identify the enriched regions are currently  
available24,26,38,48,65–70. In early algorithms, regions were 
scored by the number of tags in a window of a given 
size and then assessed by a set of criteria based on fac-
tors such as enrichment over the control and minimum 
tag density. Subsequent algorithms take advantage of 
the directionality of the reads71. As shown in FIG. 5, the 
fragments are sequenced at the 5  end, and the loca-
tions of mapped reads should form two distributions, 
one on the positive strand and the other on the negative 
strand, with a consistent distance between the peaks of 
the distributions. In these methods, a smoothed pro-
file of each strand is constructed65,72 and the combined 
profile is calculated either by shifting each distribution  
towards the centre or by extending each mapped position  
into an appropriately oriented ‘fragment’ and then 
adding the fragments together. The latter approach 
should result in a more accurate profile with respect to  
the width of the binding, but it requires an estimate  
of the fragment size as well as the assumption that  
fragment size is uniform.

Given a combined profile, peaks can be scored in sev-
eral ways. A simple fold ratio of the signal for the ChIP 
sample relative to that of the control sample around the 
peak (FIG. 3B) provides important information, but it is 
not adequate. A fold ratio of 5 estimated from 50 and 10 
tags (from the ChIP and control experiments, respec-
tively) has a different statistical significance to the same 
ratio estimated from, for example, 500 and 100 tags. 
A Poisson model for the tag distribution is an effective 
approach that accounts for the ratio as well as the abso-
lute tag numbers27, and it can also be modified to account  
for regional bias in tag density due to the chromatin 
structure, copy number variation or amplification bias67. 
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A binomial distribution or other models can also be 
used38. In another approach, the peaks are scored before 
a combined profile is generated by considering how well 
the tag distributions on the two strands resemble each 
other and whether the distance between the peaks is 
close to the expected number of base pairs48. Another 
important local correction, regardless of the peak 
detection method, is to adjust for sequence alignability. 
Depending on how the non-uniquely mapped reads are 
processed, regions of the genome containing repetitive  
elements will have a different expected tag count.  
By keeping track of how many times each sequence of 
given length along a segment appears in the rest of the 
genome, one can correct for the variation in mappability  
among segments27,38.

A major difficulty in identifying enriched regions is 
that there are three types: sharp, broad and mixed (FIG. 2b).  
Sharp peaks are generally found for protein–DNA  
binding or histone modifications at regulatory elements, 
whereas broad regions are often associated with histone 
modifications that mark domains — for example, tran-
scribed or repressed regions. Most current algorithms 
have been designed for sharp peaks, and adjacent peaks 
are coalesced post hoc for broad regions. However, many 
peak detection techniques used in ChIP–chip and 
DNA copy number analysis73 will soon be modified for 
ChIP–seq, and new approaches are being developed74,75. 
A powerful method would integrate an approach for 
sharp peaks with an approach for broad peaks and 
be able to apply an appropriate technique for the fea-
tures found without previous knowledge of the type  
of enrichment.

The performance of a peak caller can be tested by 
validating a large set of sites using quantitative PCR or  
by computing the distribution of distances from each 
peak to a nearby known protein-binding sequence motif. 
A careful comparison of the algorithms is still being car-
ried out, but it is clear that the best methods should at 
least take advantage of the strand-specific pattern that is 
expected at a binding location, adjust for local variation 
as measured by input DNA and, to a lesser extent, correct 
for sequence alignability. The statistical significance of 
enriched sites is generally measured by the false discov-
ery rate (FDR)76,77, which is the expected proportion of 
incorrectly identified sites among those that are found to 
be significant. Determining significance for a multitude 
of features in the data results in a ‘multiple hypothesis 
problem’, in which features that seem to be significant 
arise owing to the large number of features being con-
sidered. The q value of a peak is the minimum FDR at 
which the peak is deemed significant and is analogous 
to the p value in a single hypothesis test setting. As in 
analysis of other genomic data types, it is important to 
note that the accuracy of the statistical significance com-
puted in these algorithms depends on how realistic the 
underlying null distribution is. For ChIP–seq, an FDR 
derived from a null distribution based on randomiza-
tion of ChIP reads can be off by an order of magnitude48 
because tags in the same or neighbouring positions are 
not completely independent even without true binding, 
as can be seen in the input control profile.

Downstream analysis. There are many approaches that 
can be taken to analyse the biological implications of 
ChIP–seq data. Owing to space restrictions I do not 
discuss these extensively, but some important aspects 
can be highlighted. For protein–DNA binding, the 
most common follow-up analysis is discovery of bind-
ing sequence motifs78. The sequences of the top-scoring  
sites can be entered into motif-finding algorithm  
programs such as MEME79, MDScan80, Weeder81 and 
WebMOTIFS82, and potential motifs are returned along 
with their statistical significance. In some cases, a sin-
gle motif clearly stands out with much higher statistical 
significance than the subsequent matches and is largely 
insensitive to the number of the sites used to search. In 
other cases, there is a series of motifs with a gradual 
decrease in statistical significance, and further analy-
sis of combinatorial occurrences of the motifs may be 
informative in identifying cooperative interactions 
among transcription factors or other more complex 
relationships among the motifs. The process of comput-
ing statistical significance is not straightforward, and  
the available algorithms use different null models  
and multiple-testing adjustment; therefore, it is impor-
tant to functionally validate any motifs that are found.  
ChIP–chip has been used successfully on numerous 
occasions for motif discovery, but analyses have shown 
that the distances between the peaks of transcription 
factor binding and the nearby motifs are smaller for 
ChIP–seq, which indicates that ChIP–seq data are 
superior for this application48,65. For some factors, 
most of the ChIP–seq peaks are within 10–30 bp of the 
known motif 48. After a motif is found, searching for  
the sequence in the genome generally reveals that there 
are many more sites with the motif than those identified 
by ChIP–seq. Why some occurrences of a motif are func-
tional and others are not is at least partially related to the 
presence or absence of nucleosomes or a specific histone 
modification; this can be explored with nucleosome  
profiles that are obtained by sequencing29,37.

Another basic analysis that can be performed using 
ChIP–seq data is to annotate the location of the peaks 
on the genome in relation to known genomic features, 
such as the transcriptional start site, exon–intron 
boundaries and the 3  ends of genes. The transcriptional 
start sites of active genes, for instance, are known to 
be enriched with histone H3 trimethylated at lysine 4  
(H3K4me3), and enhancers are enriched with histone 
H3 monomethylated at lysine 4 (H3K4me1)25,83. It is 
informative to view this type of data at a relative scale 
— for example, by rescaling all genes to have the same 
length so that the average profile over the gene body 
can be viewed — as well as absolute scale. To find rela-
tionships between the profiles, a correlation analysis 
can be performed, as well as more advanced clustering  
methods84. ChIP–chip and ChIP–seq data from the 
same experiments are generally similar but have sub-
tle differences; therefore, combining both platforms  
requires careful attention, especially to the amount 
of smoothing applied to profiles. Incorporating other 
data types into the analysis is also necessary for bio-
logical interpretation. Classifying ChIP–seq patterns by 
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their relationship to expression data, for example, is an 
important first step — if the expression level of a gene 
correlates with the binding status of a transcriptional 
activator, this might indicate that the gene is a target 
of that activator, or if a chromatin mark is enriched at 
the promoters of genes with high expression, it can be 
inferred to be related to transcriptional activation. For 
a group of genes with a common feature — for example, 
genes that bind the same transcription factor or have 
the same modifications — Gene Ontology analysis85  
can be performed to see whether a particular molecu-
lar function or biological process is over-represented 
in those genes86. More advanced analysis includes the  
discovery of novel elements based on ChIP–seq data. For 
example, the locations of H3K4me3 and histone H3 tri-
methylated at lysine 36 (H3K36me3), which are known 
to be found at promoters and across transcribed regions, 
respectively, can be used to identify large non-coding 
RNAs87. Combined with SNP information, ChIP–seq 
data can also be used to investigate allele-specific binding  
and modification27.

Available software. Many of the algorithms for alignment  
and peak detection discussed earlier are accompanied 
by software. Some are available as a plug-in package for 
the statistical language R, a powerful system for data  
analysis that is popular among bioinformaticians88;  
others are based on standard compiled languages 
such as C or C++. In addition to the binding profile, 
most programs generate a list of enriched sites, which 
are viewed on a genome browser. One program with  
a menu-driven user interface is CisGenome69, which  
features a ChIP–chip and ChIP–seq analysis pipeline 
with support for interactive analysis and visualization. 
More user-friendly software tools designed for biolo-
gists will be developed in the future, but it is unlikely 
that the tools available in a single software package will 
meet all analysis needs. This is particularly the case 
when the experimental design is more complicated or 
when advanced analysis that involves the integration of 
other data types is needed. Therefore, in most genomics 
projects it is imperative that a bioinformatics expert is a 
member of the research team.

Conclusion and future directions
ChIP has become a principal tool for understanding 
transcriptional cascades and deciphering the informa-
tion encoded in chromatin and, owing to the recent 
remarkable progress in high-throughput sequencing 
platforms, ChIP–seq is poised to become the dominant 
profiling approach. The high cost of sequencing and 
the lack of easy access to platforms are still the limiting  
factors for most investigators, but the situation is 
expected to improve in the near future. ChIP–seq already 
offers higher resolution and cleaner data at a lower cost 
than the array-based alternatives for genome-wide  
profiling of large genomes. Improved spatial resolution 
has already resulted in substantial progress in several 
areas, most notably in genome-wide characterization 
of chromatin modifications at the nucleosome level 
and in accurate identification of the DNA sequence 
elements involved in transcriptional regulation. In the 
future, improved sequencing capabilities will allow  
the profiling of a large number of DNA-binding pro-
teins, as well as a more complete set of chromatin marks 
in a myriad of epigenomes across multiple tissues, 
cell types, conditions and developmental stages. The 
ENCODE project89, the modENCODE project41 and 
the NIH Roadmap Epigenomics Program are a first step 
in large-scale profiling, and lessons from these projects 
will spur more detailed characterizations in specific sys-
tems. To extract the most information from ChIP–seq 
data, integrative analysis with other data types will be 
essential. For example, the integration of ChIP–seq  
data with RNA–seq data may result in the elucidation of  
gene regulatory networks and the characterization  
of the interplay between the transcriptome and the epi-
genome. Experimental challenges for the future include 
the careful validation of antibodies, the development 
of methods for working with a small number of cells 
and single-cell-level characterization. Even greater chal-
lenges for many laboratories are likely to be the effective  
management and analysis of the immense amount of 
sequencing data. This will require the development  
of user-friendly and robust software tools for data 
analysis and closer interaction between laboratory  
scientists and bioinformaticians.
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