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Abstract
Chromatin immunoprecipitation coupled with ultra-high-throug put parallel
DNA sequencing (ChIP-seq) is an effective technology for the investigation of
genome-wide protein–DNA interactions. Examples of applications include the
studies of RNA polymerases transcription, transcriptional regulation, and his-
tone modifications. The technology provides accurate and high-resolution
mapping of the protein–DNA binding loci that are important in the understand-
ing of many processes in development and diseases. Since the introduction of
ChIP-seq experiments in 2007, many statistical and computational methods
have been developed to support the analysis of the massive datasets from
these experiments. However, because of the complex, multistaged analysis
workflow, it is still difficult for an experimental investigator to conduct the
analysis of his or her own ChIP-seq data. In this chapter, we review the basic
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design of ChIP-seq experiments and provide an in-depth tutorial on how to
prepare, to preprocess, and to analyze ChIP-seq datasets. The tutorial is based
on a revised version of our software package CisGenome, which was designed
to encompass most standard tasks in ChIP-seq data analysis. Relevant statisti-
cal and computational issues will be highlighted, discussed, and illustrated by
means of real data examples.

1. Introduction

Chromatin Immunoprecipitation (ChIP) coupled with oligonucleo-
tide hybridization genome tiling array (ChIP-chip) (Carroll et al., 2006;
Cawley et al., 2004; Kapranov et al., 2002) and with ultra-high-throughput
sequencing (ChIP-seq) (Chen et al., 2008; Johnson et al., 2007; Robertson
et al., 2007; Wederell et al., 2008) have been widely used to study transcrip-
tion factor (TF) regulation in the entire genome. In these experiments, cells
are treated with formaldehyde to crosslink DNA-associated protein factors
such as TFs or histones to the DNA. The DNA molecules are then
randomly sheared to sub-kilobase sized double-strand DNA fragments.
TF-bound fragments are targeted by a specific antibody and collected
during the immunoprecipitation (IP) process. After the crosslinks between
TF and DNA have been reversed, the DNA fragments with length falling
within a certain range are selected and amplified. In ChIP-chip experi-
ments, which were popular until recently, these fragments are hybridized to
a microarray with millions of 25–75mer probes tiling the whole genome. In
contrast, in the ChIP-seq protocol, oligonucleotide linkers or adapters are
ligated to the both ends of the ChIP fragments to produce the ChIP-seq
library which are then sequenced by the next-generation sequencing
machine in a massively parallel manner.

Although the ChIP preparation step is essentially the same in both the
ChIP-chip and the ChIP-seq platforms, the subsequent steps of the two
approaches are quite different. The fluorescence intensity of each probe is
captured and digitalized in the ChIP-chip, whereas raw nucleotide short
tags (aka reads) are sequenced base-by-base in the ChIP-seq. Moreover, the
noise sources are distinct: the major noise in microarray experiments results
from the probe affinity effect and the cross-hybridization effect, whereas
linker/adaptor contamination, background noise, image processing error,
and others all contribute to the ChIP-seq error profile.

Several studies have compared results from ChIP-chip experiments and
ChIP-seq experiments on the same TF (Euskirchen et al., 2007; Ji et al.,
2008; Robertson et al., 2007). Their analysis revealed that higher sensitivity
and sharper resolution of protein–DNA bindings are achieved using ChIP-
seq. As sequencing cost continues to decrease rapidly, the ChIP-seq
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technique is expected to become more and more dominant in the study of
transcriptional regulatory pathways and networks. However, because
ChIP-seq datasets are massive and complex, their analysis requires advanced
statistical methods, efficient computational algorithms, and user-friendly
software for processing and visualization. After a brief discussion of some
design issues related to ChIP-seq experiments, we will examine the pipeline
of ChIP-seq data analysis step by step (Fig. 3.1). We will illustrate the
analysis by using the software CisGenome ( Ji et al., 2008) to analyze two
datasets (PolII ChIP-seq and STAT1 ChIP-seq) (Rozowsky et al., 2009)
(Table 3.1) that were produced as part of the ENCODE project (The
ENCODE Project Consortium, 2007).

2. Planning of ChIP-Seq Experiments

The planning of a ChIP-seq experiment involves the consideration of
many practical issues: Which sequencing platform to use? How many short
reads need to be sequenced? Is a control sample necessary? How to choose
and design the control experiment? How many biological replicates are
recommended for each ChIP-seq experiment? It is useful to have a brief
discussion of these issues before our treatment of data analysis.

2.1. Choices of sequencing platforms

Several commercial ultra-high-throughout sequencing platforms have
emerged on the market since 2005. Popular brand names include Illumina
Solexa, ABI SOLiD, and Roche 454. Smith et al. have compared the
accuracy and efficiency of the above three platforms in the study of a mutant
strain of Pichia stipitis (Smith et al., 2008). The authors found that all three
next-generation sequencing platforms successfully identified nucleotide
variations between the reference genome and the mutant strains given
sufficient coverage. They concluded all three are suitable for accurate and
high-throughput sequencing studies. However, there are differences in
their error profiles: the primary sequencing error for Illumia Solexa and
ABi SOLiD is base substitution, whereas Roche 454 has difficulty in
sequencing stretches of repetitive identical bases (homopolymers) (Margulies
et al., 2005), thus leading to a higher rate of insertion and deletion (indel)
errors. In de novo assembly study without a reference sequence, longer read
platform such as Roche 454 is favored. For the purpose of ChIP-seq
experiment, it is common to use either Illumina Solexa or ABI SOLiD
because of their ability to deliver a much higher number of sequence reads
in parallel.
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Table 3.1 Overview of ChIP-seq datasets

Sample name Replicate

Number of

Illumina lanes

Number of

raw reads

Number of

mappable reads

Number of

nonredundant reads

% of nonredundant

reads out of mappable reads

IFN-g STAT1 ChIP 1 4 48,138,968 10,619,323 9,850,217 92.76
2 2 31,896,881 17,446,502 16,253,194 93.16
Total 6 80,035,849 28,065,825 25,818,743 91.99

IFN-g input control 1 6 50,515,792 24,851,515 22,538,851 90.69
PolII ChIP 1 2 15,768,600 8,699,929 7,769,678 89.62

2 5 21,301,982 11,628,339 10,171,478 87.47
3 4 20,789,343 10,601,602 9,221,336 86.98
Total 11 57,859,925 30,899,870 24,822,736 80.33

Input control 1 13 60,452,858 30,827,818 24,602,505 79.81

The sequencing datasets of STAT1 and PolII are obtained from the public gene expression omnibus (GEO) database (GSE12783 series), which is generated as part of the
ENCODE project. One dataset contains STAT1 ChIP-seq data on interferon (IFN)-g simulated human HeLa cells and the total DNA input control on the IFN-g
human HeLa cells; the other dataset contains PolII ChIP-seq data on the unsimulated human HeLa cells and the total DNA input control of the unsimulated cells. There
are two biological replicates for the IFN-g STAT1 ChIP-seq data and three biological replicates for the PolII data. The first 25 bp of the 27–32 bp raw reads are mapped
back to the human genome assembly (hg18/NCBI Build 36) obtained from the UCSC Genome Browser. Mappable reads are those that map to a unique location in the
genome (with up to two mismatches allowed). Nonredundant reads are mappable reads that occur only once in the dataset.



2.2. Sequencing statistics and quality control

For sequence-specific TF-binding localization and pattern discovery, sin-
gle-end 25–35 bp reads are commonly used in ChIP-seq studies. We define
a mappable read as a read that maps (aka aligns) to a unique location in the
genome (with up to two mismatches allowed); nonredundant reads are the
mappable reads that occur only once in the dataset. The goal of a ChIP-seq
experiment is to gain an adequate number of mappable reads aggregated at
the target regions. At current Solexa Illumina capacity, a single sequencing
lane yields tens of millions of short reads and approximately half of them can
be uniquely aligned back to the reference genome. In mammalian genomes,
a coverage of 10 million reads typically provides clear binding signals at a
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Figure 3.1 Work flow of ChIP-seq data processing and analyzing pipeline.
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large fraction of the binding sites. For a more compact genome such as
Drosophila melanogaster, one can attain higher signal intensity at the same
sequencing depth.

Before any large-scale production run of a ChIP-seq experiment, which
may consume valuable biological samples and may require large amounts of
reagents and machine time, it is useful to first conduct a pilot experiment
run on a single lane (a sequencing machine typically has multiple lanes that
can be used in parallel in each run). As a very rough guideline, a successful
pilot experiment should meet the following four requirements. First, the
number of raw sequencing reads should meet the expected depth within the
same sequencing batch. Low yield in one particular lane implies the failure
of the antibody or the library preparation. Second, the percentage of
uniquely mappable reads achieves at least one-third of the total reads for
mammalian genomes. Otherwise, contamination of the library should be
suspected and investigated. Third, the percentage of nonredundant reads
(two reads are redundant if they give identical sequence), should be
greater than 50% of the total mappable reads. The nonredundant rate is a
powerful measurement of the quality of a sequencing experiment as well
as an informative estimation of the saturation status. As the sequencing
depth increases, the nonredundant rate will decrease. However, at the first
pilot lane of the experiment, we do not expect the saturation to occur so
soon, unless the antibody failed to pull down desirable number of protein–
DNA complexes. Finally, visual examination should reveal instances
of clearly defined peaks with the expected form (see Section 3.2). The
pilot run will provide valuable data for quality control, and will save
the experimenter both time and money, should there be a need to
troubleshoot.

2.3. Saturation

If the pilot experiment is satisfactory, the next step is to generate more reads
in production runs. The saturation point of the sequencing depth is defined
as the minimum number of reads which would enable the detection of all
true protein–DNA binding loci. We suggest an evaluation procedure simi-
lar to the one used in Robertson’s paper (Robertson et al., 2007) to test
whether a ChIP-seq dataset is saturated. First, we run the peak calling
program on the full dataset. Then, we randomly sample one half of the
reads and call peaks from one of the half sets using the sample peak calling
parameters. The same set of controls will be used, if applicable.

The peak numbers and quality between results from the full set and from
the half set are then compared. Peaks are binned at different false discovery
rates (FDRs): for instance, 0.01, 0.05, 0.1, and 0.2; three statistics are
calculated for each bin of peaks: (1) the motif site enrichment within the
peak regions; (2) the peak conservation score; and (3) the conserved motif
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site enrichment. If these statistics improve when we double the size of the
reads, it demonstrates that the data have not yet reached the saturation
point. In this case, obtaining more reads will definitely be helpful.

2.4. Negative controls

In addition to sequence reads from positive ChIP samples, it is recom-
mended that sequence reads be generated also from negative control sam-
ples. Use of negative controls can significantly increase the sensitivity and
specificity of the peak detection ( Ji et al., 2008; Rozowsky et al., 2009).
Negative controls that are commonly employed in ChIP-seq experiments
can be classified into three types. The first type is total DNA input control,
where non-IP’ed DNA is sheared, size-selected, and sequenced. The sec-
ond type is Mock IP control, where we use a nonspecific antibody, for
example, the immunoglobulin G (IgG) antibody on the same cells. The
third type includes all specially designed controls. For instance, if the ChIP
is performed on simulated cells, then using the same antibody on unsimu-
lated cells is a good negative control. Also, in some studies, when the
antibody of the TF of interest is not available or the antibody affinity is
not strong enough, we might use FLAG or other epitope tags in the IP step.
In this case, utilizing the FLAG antibody on un-FLAGed cells will provide a
good negative control.

Specifically, negative controls are important for several reasons. First, it
provides a background distribution to aid the FDR estimation. In this
viewpoint, the input control is thought to be a better control than the
mock IP because the reads of the input control will have a more balanced
distribution throughout the genome. Whereas the reads of the mock IP
control constitute numerous repetitive reads sequenced from the DNA
fragments that the antibody pulled off, therefore, leaving fewer randomly
distributed reads for background estimation. Furthermore, negative
controls provide a means for us to indentify the genomic regions that
are expected to have more reads for reasons largely unrelated to the
binding of the TF of interest. For example, data from Illumina Solexa
sequencer may exhibit a bias toward the GC-rich sequences (Dohm et al.,
2008). In addition, Rozowsky et al. discovered that input controls have
small peaks in transcribed regions especially near transcription start sites
(TSSs), because the chromatin tends to be more open at these regions
(Rozowsky et al., 2009). Finally, specially designed negative controls will
aid in the detection of abnormal associations between the antibody and the
DNA sequences. In the situation of the FLAG antibody, the negative
control that uses the FLAG antibody on un-FLAGed cells is the best control
for detecting potential bindings between the FLAG antibody and the DNA
sequences.
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2.5. Biological replicates

Although ChIP-seq data are believed to be much less noisy as compared to
ChIP-chip data, it is still important to use multiple biological samples
whenever it is possible. Having biological replicates helps to reduce sam-
ple-specific or sequence-specific biases, which can be caused by a variety of
reasons, such as antibody affinities, sonication and amplification variations,
library contaminations, and sequencing errors.

If the variability in the replicates is unacceptably large, for example, if the
set of peaks detected are largely inconsistent, then one may need to improve
the experimental protocol and repeat the experiments to obtain acceptable
data. Sometimes, if there are enough replicates and only one of them is
inconsistent with the others, then it may be reasonable to proceed with the
analysis after removing the outlier sample. In any case, after we have
obtained replicate samples with largely consistent results, then we are still
faced with the question of how to combine the information in the replicates
in the subsequent steps of the analysis.

In this tutorial, we handle replicates by a simple procedure, which calls
peaks from individual biological replicate separately and then intersects
them to obtain the final common peak regions. We choose this intersecting
approach because we found it to be a safe and effective way to detect robust
and reproducible binding events when there are noticeable differences
among the biological replicates. An alternative and common practice is to
pool all reads from multiple biological replicates together and call peak
regions from pooled data. For example, Rozowsky et al. sampled the same
number of reads from each replicate and combined them to proceed to
further analysis (Rozowsky et al., 2009). However, the sampling method or
the linear scaling method might not be effective in some dataset, because the
ratio of signal intensities between biological replicates is not always equal to
the ratio of sequencing depths (Fig. 3.2). Thus, a more rigorous statistical
method to address the multiple sample normalization and the multiple
sample consistency testing problem is desired.

3. Processing and Analyzing ChIP-Seq Datasets

In this section, we demonstrate step by step how to use a revised
version of the CisGenome software suite ( Ji et al., 2008) to process and
analyze two published ChIP-seq datasets (for STAT1 and PolII) (Fig. 3.1). In
this revised version, we designed and implemented an improved peak calling
procedure based on the use of an iterative background count estimation
technique. The new peak caller is described in more details in Section 3.3
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below. Although our discussion is illustrated by the CisGenome system,
there are other software tools available which may be used to accomplish
similar analyses (Boyle et al., 2008; Fejes et al., 2008; Johnson et al., 2007;
Jothi et al., 2008; Kharchenko et al., 2008; Rozowsky et al., 2009; Tuteja
et al., 2009; Valouev et al., 2008; Zhang et al., 2008).

3.1. Step 1. Map the reads back to the reference genome

Almost always, the first step in a ChIP-seq data analysis is the mapping of
reads to a reference genome. In this step our goal is to identify, for each
short read in the dataset, all the locations in a reference genome that show
perfect or near perfect (say with no more than two mismatches in a 25-bp
read) matches to the read (Fig. 3.1, Step 1).

There are quite a few programs available to map the short reads back
to the reference genome ( Jiang and Wong, 2008; Langmead et al., 2009;
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Figure 3.2 M–A plot of two STAT1 biological replicates. The entire human genome is
divided into 100 bp nonoverlapping windows and the number of reads from the two
STAT1 biological replicates in each window is counted separately. The M-A plot is
drawn for only the window counts on chromosome 1. X-axis: the average number of
reads between the two STAT1 biological replicates in each window. Y-axis: the
difference between the number of reads from the first STAT1 biological replicate and
the number of reads from the second STAT1 replicate in each window. The black-
dashed line represents the relation between the sequencing depths of the two replicates.
This figure demonstrated that the differences between the two biological samples are
more significant than the differences between the sequencing depths.

The Analysis of ChIP-Seq Data 59



Li et al., 2008, 2009). Mapping is a straightforward task because there is only
one correct result, given the raw reads, the reference genome assembly, and
the number of mismatches allowed. Therefore, it does not matter which
short-read mapping program is used. The differences among these software
tools lay primarily on the algorithm designs and computational efficiencies.
A couple of them have add-on features: Bowtie (Langmead et al., 2009) is
one of the fastest short-read mapping program; Maq (Li et al., 2008) can
leverage on the reads quality scores; and SeqMap ( Jiang and Wong, 2008)
considers insertions and deletions (indels).

However, there is a tradeoff between the length of the reads to be used
in the mapping and the yield of uniquely mappable reads. We usually do not
use the full length of the reads in the mapping step, primarily because the
sequencing error at each base increases rapidly near the end of the read. For
example, in the STAT1 ChIP-seq data, 27–28 bp reads were sequenced.
The error rate at positions 26–28 is much higher than that in positions
10–12 in a typical sequencing lane (Fig. 3.3). For ChIP-seq, it is standard to
use the first 25 bases of the raw reads to map back to the reference genome
assembly. Considering the fact that the human genome is highly repetitive
(same for the other mammalian genomes), theoretically about 75% of the
human genome can be uniquely mapped using 25 bp reads within two
mismatches (McKernan et al., 2009). A mappability profile that counts the
redundancy of a read beginning at each nucleotide position on the genome
has been calculated to improve peak detection accuracy and specificity
(Rozowsky et al., 2009).

The mapping results and statistics of the PolII and STAT1 dataset are
listed in Table 3.1. The original reads have varying length 27–35 bp. Here,
we remapped the first 25 bases of each read to the human genome assembly
(hg18/NCBI Build 36) obtained from the UCSC Genome Browser Data-
base (Rhead et al., 2010; The Genome Sequencing Consortium, 2001)
using the SeqMap software ( Jiang and Wong, 2008). From the mapping
statistics, we can deduce that this dataset is a deeply sequenced, comprehen-
sive, and not highly redundant.

3.2. Step 2. Background estimation

Based on the ChIP-seq protocol and technique, ideally, all reads should
be sequenced from the ends of the ChIP fragments that were bound by the
target TF. However, in any ChIP-seq datasets, a considerable fraction of
the reads may not have originated from these ChIP fragments. For instance,
the antibody might target proteins other than the one studied, therefore
capturing nonspecific fragments. Other factors that may induce such extra-
neous reads include library contamination, PCR amplification selection,
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linker/adapter contamination, and image processing errors. What is more,
because of sequencing errors, a read that originated in one location of the
genome may be uniquely mapped to a different location of the genome that
has sequence similarity with the original source.

We can regard all these reads that are unrelated to the binding events of
interest, as “background reads” in our ChIP-seq experiment. It is not easy to
ascertain whether each read results from a true binding event in the cells or
from background. However, we can attempt to estimate the rate of occur-
rence of the background reads. Knowledge on the background rate is
important for the assessment of the statistical significance of the binding
regions detected by the peak caller (see Section 3.3). For each ChIP-seq
sample, we define the background rate to be the ratio of the number of
background reads to the total number of reads in the sample. We call a read a
true signal read if it falls into the called peak regions (from the actual
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Figure 3.3 Sequencing error rate comparing to the reference genome. The 28-bp reads from
land B, replicate 1 of the STAT1 ChIP-seq dataset are mapped back to the human
genome (hg18/NCBI Build 36). For each uniquely mappable (up to two mismatches)
read, we count each position on the read which is different from the reference genome.
X-axis: nucleotide position on the short reads (1–28 bases); Y-axis: the error rate
comparing to the total number of uniquely mappable reads in that lane. Asterisks on
solid line: the error rate for nucleotide A (the reference genome has A in that position
but the sequencing read has C/G/T); boxes on dashed line: C; crosses on dotted line:
G; triangles on dot-dashed line: T; and finally, points on solid line: the addition of these
four types of errors.
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binding fragments). Otherwise, we call it a background read. Since the
estimation of the background rate and the detection of the peak regions
are dependent on each other, we propose an iterative method to solve this
problem (see Section 3.3).

In other words, the peak calling problem is a signal-over-noise detection
problem. We can take advantage of classical methods and measuring stan-
dards in the signal-over-noise problem. At the global scale, we use the
background rate to estimate the ratio of the ChIP signal intensity to the
landscape intensity; in each called peak region, we take the fold change of
the ChIP signal intensity to the control signal intensity as the local estimate
of the signal-to-noise ratio.

3.3. Step 3. Peak calling

In this step, we discuss the most critical task in the ChIP-seq data analysis
pipeline. This is to identify theChIP signal enriched genomic regions. In other
words, where did the TF bind? This process is referred to as peak calling because
the count of reads from the same strand of DNA (Watson or Crick) in a TF-
bound fragment should showapeaknear the binding location (Fig. 3.1, Step 2).

If a protein factor has a sharply focused binding site, in a successful
experiment, one should be able to observe the bi-horned peaks nice bell-
shaped peaks will be shaped at both the Watson strand and the Crick strand.
This is because a fragment is always sequenced from its ends toward its mid-
point. A Watson read represents the 50-end of a ChIP fragment, whereas a
Crick read represents the 30-end. Therefore, the Watson peaks (as the left
red peak in Fig. 3.1) and the Crick peaks (as the right blue peak in Fig. 3.1)
are located in the opposite sides of the TF-binding site (TFBS). Thus the
two peaks may be used to define a candidate binding region.

In contrast, if the ChIP-seq experiment fails because of the weak affinity
of the antibody, extremely high, block-shaped peaks at repetitive regions or
generally flat signal across the entire genome would be observed.

As depicted in Fig. 3.1, the mapped reads and the signal profile (defined
below) can be visualized in a genome browser. Here, we use the CisGen-
ome Browser ( Jiang et al., 2010) that is integrated with the CisGenome
software, but other genome browsers, such as the UCSC Genome Browser
(Kent et al., 2002) and the Affymetrix Integrated Genome Browser (Nicol
et al., 2009) can also be used after we export the suitable files from CisGen-
ome. To obtain the signal profile, we use a fixed window size w and count
the number of the Watson and the Crick reads that fall into each nonover-
lapping window along the entire genome. Window size w ¼ 100 is recom-
mended for sequence-specific TF-binding ChIP-seq data ( Ji et al., 2008).

In the signal profile track, we can see that the Watson reads and the
Crick reads are clearly separated. Some programs shift theWatson and Crick
reads toward their mid-points, and then detect peak regions by combining
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the shifted reads ( Ji et al., 2008; Kharchenko et al., 2008; Valouev et al.,
2008). Kharchenko et al. used the cross-correlation magnitude to find the
optimal shifting distance, while Ji et al. used half of the average peak length to
shift. An alternative strategy, which we have used to identify the candidate
region marked by the black line in the third step of Fig. 3.1, is to call peaks
from theWatson strand and from theCrick strand separately, and then regard
the region bracketed by the two strand-specific peak locations as the candi-
date TF-binding region. One advantage of this strategy is that we can easily
check the balance between the numbers of reads in the coupled peaks.
Moreover, since the length of the ChIP fragments varies greatly among
peak regions, using a fixed global shifting distance may not be sufficient.

The first ChIP-seq peak caller, implemented in ( Johnson et al., 2007),
was an intuitive, ad hoc method. It arbitrarily decides a genome-wide cutoff
of signal intensity, and defines peaks as the regions above the predetermined
cutoff level. A limitation of this method is that it does not provide signifi-
cance and ranking of the detected peak regions. Similar to Johnson’s
approach, there are numerous other tag-aggregation methods in which
the ranking of the peaks is based solely on the number of tags assembled
in each peak region. The rationale for this ranking rule is based on the
assumption that the height of a peak is a linear function of the proportion of
cells that have the TF bound in the peak locus. Thus, the most significant
binding will produce the highest peak. Nevertheless, this assumption is not
always true. Certain chromatin regions are open and, therefore, easily
fragmented, leading to stronger peaks in or around the transcribed gene
neighborhood (Rozowsky et al., 2009). In addition, if the TF binds to
multiple locations close to each other, the multiple peak signal strength
will add together and shape a broader, stronger, and continuous peak.

To improve the above fixed-cutoff method, a more advanced peak
calling program may first estimate the background distribution and then
use it to help assess statistical significance of the peaks.

Commonly used distributions for the ChIP-seq background counts
include the Poisson distribution ( Ji et al., 2008; Zhang et al., 2008) and
the negative binomial distribution ( Ji et al., 2008). Comparing to the
Poisson distribution, the negative binomial distribution is a better fit to
the ChIP-seq background reads distribution ( Ji et al., 2008).

When a negative control sample is available, the same peak caller can be
performed on both the ChIP sample and the control sample. A simple way
to filter out false peaks in the control samples is to require a minimum fold
change of the ChIP signal to the control signal ( Johnson et al., 2007;
Valouev et al., 2008). A more statistically rigorous approach to this two-
sample problem is implemented in the CisGenome peak caller ( Ji et al.,
2008). For each read in a given genomic window, we regard it as a success if
it is from the ChIP sample; a failure if from the negative control sample.
Thus, given k1i is the number of ChIP reads in the window and k2i is the
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number of control reads, the number of ChIP reads in that window follows
a conditional binomial model, that is, k1ijni " binomialðni; p0Þ, where
ni ¼ k1i þ k2i and p0 is the probability of seeing a ChIP read in that window.

In CisGenome, Ji et al. divided the entire genome into nonoverlapping
windows of w-bp width and counted the number of ChIP reads and the
number of negative control reads in each window. Then they took the ratio
of the number of windows that contain only one ChIP read and the number
of windows that contain only one read (either a ChIP read or a control read)
as the estimation of p0. We have found that this estimation method some-
times failed when a ChIP-seq sample was highly redundant (either because
the sample is over-saturated or because the antibody failed) and had very few
windows containing only one read, thus leading to a biased estimation of p0.

To deal with this problem, we have recently developed an improved
version of this conditional binomial approach. The main idea is to estimate
the expected success rate p0 in an iterative manner. Assuming that background
reads are uniformly distributed, r0 is the ratio of the probability of seeing a
ChIP read to the probability of seeing a control read at any genomic position,
that is: r0 ¼ (number of background reads in a ChIP sample)/(number of
background reads in control). Similarly, it is assumed that the number of ChIP
reads within a sliding window of w-bp follows a conditional binomial model,
that is, k1ijni " binomialðni; p0Þ, where p0 ¼ r0/(1 þ r0). The program starts
with r0 equals to the total number of reads in the ChIP sample divided by the
total number of reads in the control sample (r0 ¼ total number of ChIP reads/
total number of control reads). The program identifies peaks using the initial
estimation of r0, and then filters out the ChIP and control reads that fall into
peak regions. Once the peak regions have been filtered out, r0 is reestimated
and iterations continue until r0 converges.

This peak caller program is applied to the Watson and the Crick reads
separately. After all of the peaks have been identified, the Watson and Crick
strand peaks are combined. Only those peaks containing a balanced number
of Watson and Crick reads are paired. The peak boundaries are set as the
modes of the coupled peaks. The fold change between the ChIP signal and
the control signal is also calculated for each peak region. An example of
output file of the top 20 STAT1 peaks is displayed in Table 3.2.

In addition to acquiring a set of peak regions, we are also interested in the
significances of the peak regions. In CisGenome, we calculate the FDR based
on the read distribution in both the ChIP and control samples. To be more
specific, the FDR of each w-bp windowwith k1iChIP reads and ni total reads,
is the ratio of the expected number ofwindows that have equal to ormore than
k1i ChIP reads out of ni total reads given p0, divided by the observed number
of such windows (see Methods in Ji, et al., 2008). The better the background
estimation fits the data, the more accurate is the FDR estimation.

In our case study, two-sample peak calling is performed on each
biological replicate of the interferon-g (IFN-g) STAT1 ChIP versus
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Table 3.2 Top 20 STAT1 peaks

Rank Chromosome Start End Length Peak height

Number of

ChIP reads

Number of

control reads

Fold change of

ChIP/control

1 chr20 48342552 48342733 182 1328.25 5698 183 31.05
2 chr2 191593263 191593466 204 1204 4606 84 54.84
3 chr14 23700077 23700317 241 1124 5198 102 50.96
4 chr6 30565062 30565269 208 1077.75 3720 65 56.8
5 chr15 42808242 42808406 165 985.25 4447 104 42.76
6 chr5 131854389 131854584 196 956.25 3506 95 36.72
7 chr5 131860571 131860746 176 848.25 6768 220 30.76
8 chr16 55580792 55580988 197 815.25 2897 112 25.75
9 chr16 18845403 18845625 223 771.5 2283 46 49.64
10 chr12 107546406 107546594 189 741.25 3047 87 34.83
11 chr19 10242625 10242835 211 685.25 2505 77 32.33
12 chr17 37794087 37794446 360 662.25 3649 115 31.59
13 chr1 148801113 148801409 297 658.5 3301 109 30.15
14 chr12 47532339 47532527 189 656 3339 121 27.48
15 chr5 43076129 43076301 173 613.75 2995 133 22.44
16 chr16 10830348 10830537 190 608.75 2415 71 33.78
17 chr17 55218675 55218884 210 583.5 2373 49 48.43
18 chr3 126327407 126327607 201 582.25 2258 55 40.68
19 chr7 101493956 101494129 174 565.25 2273 74 30.72
20 chr16 28451190 28451421 232 562.25 2741 58 46.86

The peak regions are ranked by the peak height, which is the average of the maximum numbers of reads in a 100-bp window on the Watson and Crick strands.
Alternatively, we can rank the peak regions by the last column, which is the fold change of ChIP signal intensity to the control signal intensity. The peak start is the mode
of the Watson peak; the peak end is the mode of the Crick peak. The number of ChIP (or control) reads is the average count in the coupled Watson and Crick peaks.



IFN-g input control comparison and also each biological replicate of the
PolII ChIP versus input control comparison. Peak numbers, the percentage
of ChIP reads fell into peak regions, and the ChIP/input signal fold change
enrichment in the called peak regions (normalized by the background ratio
between the ChIP and the input control samples) at the FDR 0.01 cutoff are
provided as output (Table 3.3). For sequence-specific transcriptional factor
ChIP-seq data sequenced at a depth of 10 million mappable reads in
mammalian genomes, we expect to see at least 3% of ChIP reads originating
from the binding peaks (varies from factors and samples) and a ChIP/input
fold change above 5.0. After peak detection on each biological replicate, we
intersect peak regions of individual replicate to get the common regions as
the final list. Finally, we have 3347 reproducible STAT1 peaks and 9087
PolII peaks. Because of the noticeable differences among the biological
replicates, using this stringent intersection approach, we get 54–86%
fewer peaks than the published peaks in the Rozowsky et al.’s paper.

3.4. Step 4. Gene assignment and peak annotation

After we obtain a list of peak coordinates, it is important to study the
biological implications of the protein–DNA bindings. Certain questions
have always been asked: what are the genomic annotations and the functions
of these peak regions?

Because many cis-regulatory elements are close to TSSs of their targets,
by default CisGenome associates each peak to its nearest gene, either
upstream or downstream. In our example dataset, the PolII peaks are closer

Table 3.3 Summary of peak calling results of STAT1 and PolII

Replicate 1 Replicate 2

IFN-g STAT1 versus IFN-g input control peak calling
Number of peaks 3,822 14,644
Percentage of ChIP reads fell into peak regions 4.04 11.54
ChIP/input (normalized) signal ratio in peak regions 11.09 9.48

Replicate 1 Replicate 2 Replicate 3

PolII versus input control peak calling
Number of peaks 16,893 21,585 22,296
Percentage of ChIP reads fell into peak
regions

27.14 48.71 51.15

ChIP/input (normalized) signal ratio in
peak regions

15.51 20.00 22.10

For each called peak list, we calculated the percentage of ChIP sample reads fell into the called peak
regions and the ChIP/input signal fold change in the peak regions (normalized by the background read
ratios in both samples).
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to the nearest TSSs than the STAT1 peaks (Fig. 3.4). The STAT1 peaks are
more enriched in the intron regions and the intergenic regions (Table 3.4),
which is consistent with its known cis-regulatory function.

In CisGenome, we can also associate peaks with all genes in their
neighborhood. This function is more informative and helpful in screening
potential cis-regulatory targets, especially when transcription profiling data
under the same cellular condition are available. As a different approach,
Ouyang et al. (2009) computed a weighted average of peak signals detected
near a gene and regard it as a quantitative score for the strength of the
association between the TF and the gene. The authors showed that such
scores can be used to build good predictive models of the absolute gene
expression in mouse embryonic stem cells.

In the CisGenome Browser, the genetic landscape around each peak can
be displayed at any resolution. Other genome features such as phylogenetic
conservation can also be added to the visualization (Fig. 3.1, Step 4).

3.5. Step 5. De novo motif analysis

Another important task in the analysis of the predicted peak regions is
de novo motif discovery. In some studies, the exact sequence to which the
TF binds is known, or even better, a set of validated binding sites is
available. However, if this information is not available, we will need to
recover the binding motifs from the peak sequences as well as from their
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Figure 3.4 Density of peak locations relative to nearest genes. X-axis: distance from the
peak center to the nearest transcription start site (TSS), where 0 is the position of the
TSS. Negative numbers: 50 of TSS. Positive numbers: 30 of TSS. Only distance from
&250 to 250 kbp is displayed in this figure. Y-axis: probability of seeing a peak within
each bin of 10 kbp (percentage of peaks in each bin/bin size). Solid line: 3347 STAT1
peaks. Dashed line: 9087 PolII peaks.
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orthologous sequences. CisGenome has incorporated a Gibbs sampling
module (Lawrence et al., 1993; Liu, 1994) which can recover enriched
motifs from the sequences of the peak regions.

In CiGenome Browser, we can visualize the top motif logos. The degree
of consistency between the known or published motif and the de novo
discovered motif can be used to assess the success of the experiment.
Motif occupancy and enrichment in peak regions and motif conservation
scores offer additional means for assessments.

Three independent runs of Gibbs sampler are performed on the FDR
0.01 STAT1 peak regions. Top enriched de novomotifs include the canonical
STAT1 motif and the activating protein 1 (AP-1) motif (Table 3.5). There
are 2544 (76.01%) of the 3347 STAT1ChIP-Seq peaks that contained one or
more STAT1 de novo recovered motif sites within the peak boundaries. The
STAT1 motif sites are close to the peak center (Fig. 3.5A). About 33.49% of
these STAT1-containing peaks have conserved STAT1motif sites which are
located within the top 10% conserved genomic regions (conservation scores
of the 44-vertebrate alignment phastCons scores for the human hg18 genome
are obtained from theUCSCGenomeBrowser Database (Rhead et al., 2010;
Siepel et al., 2005)). On average, the conservation scores for themotif sites are
significantly higher than their neighborhood regions (Fig. 3.5B).

4. Discussion

In summary, we have provided a systematic discussion of issues related
to the analysis of ChIP-seq data. We demonstrated how several key steps,
including data exploration and visualization, peak calling, genomic

Table 3.4 Genomic location of peak regions comparing to the nearest genes

Peak location

3347 STAT1 peaks 9087 PolII peaks

# % # %

IntraGenic 1430 42.72 5505 60.58
50-UTR 143 4.27 2288 25.18
30-UTR 32 0.96 167 1.84
CDS 40 1.20 936 10.30
Intron 1215 36.30 2114 23.26
Exon 215 6.42 3391 37.32
InterGenic 1917 57.28 3582 39.42
Upstream 1237 36.96 2849 31.35
Downstream 680 20.32 733 8.07

IntraGenic: transcribed region of a gene; 50-UTR: 50-untranslated region; 30-UTR: 30-untranslated
region; CDS: coding sequence; InterGenic: outside the transcribed gene regions.
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Table 3.5 Enrichments of de novo discovered motifs

Motif name Motif logo

Enrichment in 3347 STAT1 peaks

r1 r2 r3

STAT1

1 9
0

1

2

0

1

2 13.57 18.63 24.35

AP-1

1 9
0

1

2

0

1

2 4.33 6.10 7.96

Three motif enrichment ratios are calculated as described in Ji et al.’s (2006) paper: r1 ¼ percentage of peak regions containing the indicated motif(s) versus percentage of
matched control regions with the same motif(s); r2 ¼ percentage of phylogenetically conserved peak regions containing the motif(s) versus percentage of phylogenetically
conserved matched control regions with the same motif(s); r3 ¼ percentage of regions containing the phylogenetically conserved motif(s) versus percentage of matched
control regions with the phylogenetically conserved same motif(s). Matched control regions are randomly selected such that the distance between the control region and
the closest transcription start site (TSS) has the same probability distribution as the distance between the peaks region and the TSS. For TF ChIP-seq peaks, we expect the
r1, r2, and r3 to be simultaneously greater than 5.0 for the primary binding factor, and to be simultaneously greater than 2.0 for other collaborating binding factors.



annotation, and downstream motif analyses, can be accomplished by a user-
friendly software package CisGenome. We rely on other specialized soft-
ware kits for the low-level analyses, such as base calling, image processing,
error filtering, and so on.

The example datasets include TF ChIP-seq and polymerases transcrip-
tion ChIP-seq. Finally, our analysis pipeline can be extended to analyze
histone modification ChIP-seq dataset. For such applications, some minor
modifications on the peak calling algorithms have to be made, including
enlarging window size for data exploration and background estimation, and
shifting/coupling strategies on the Watson and Crick strands.

The CisGenome software is available at http://www.biostat.jhsph.edu/
"hji/cisgenome/.

ACKNOWLEDGMENT

This chapter is based on research supported by NIH Grants R01HG004634 and
R01HG003903.

A

Distance of motif center to peak center (bp)

D
en

si
ty

−200 −100 0 100 200

0.000

0.002

0.004

0.006

0.008

0.010

B

Relative distance to motif start position (bp)

C
on

se
rv

at
io

n 
sc

or
e 

[0
, 2

55
]

−40 −20 0 20 40 60

30

40

50

60

70

Figure 3.5 Motif analysis on the STAT1 peak regions. (A) Histogram of STAT1 de novo
motif resolution. X-axis: distance from the center of STAT1 recovered motifs to the
peak center. Y-axis: density (percentage of motifs) per bin. Bin size: 10 bp. STAT1
motifs are most often located close to the peak center. (B) Average conservation scores
for motif sites and flanking positions. X-axis: distance to the motif start position, where
0 is the first base of the motif site. Negative numbers: 50 of the motif sites. Positive
numbers: 30 of the motif sites. The flanking region of 50 bp on either side is displayed in
this figure. Y-axis: converted UCSC phastCon scores of 44 vertebrate alignments to the
hg18 human genome. The converted conservation score is ranging from 0 (least con-
served) to 255 (most conserved). Black solid line: 3218 STAT1 sites within peak
regions. Black dashed line: STAT1 motif sites boundaries.
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