VISUALIZING ASSEMBLY FOR NGS

Cydney Nielsen

BC Cancer Agency, Genome Sciences Centre Vancouver, Canada

Genome Sequencing

Sample preparation ↓ Physical sequencing ↓ Assembly

Sequencing Technologies

•

•

.

Sequencing Technologies

Second Generation

Roche/454

Life Technologies SOLiD

Illumina HiSeq

Produce sequencing reads that are tens to hundreds of bases long

Genome Sequencing

Genome Sequencing

Genome Assembly Challenges

Adapted from Schatz *et al.* Briefings in Bioinformatics, 2011

Assembly Visualization: Applications

- Finishing
 - involves closing gaps, correcting misassemblies and improving the error probabilities of consensus bases
 - often done manually; can be labour intensive and costly
- Algorithm development and iteration
 - often valuable to inspect potential assembly errors
- Investigation of structural variation
 - Detailed analysis of biologically relevant events in resequencing data

Aligned Reads	File Navigate Info Color Dim Misc Sort								
Window	standard.fasta.screen.ace.1				Contig1 Some Tags Pos: I				clear
VVIIIQOVV	Search for String	Compl Cont	Compare Cont	Find Main Win	nd Main Win Err/10kb: 313.29				
			770 780) 790	800	810	820	830	
	CONSENSUS	GG	GCTACAÁGAAATI	ТТ*ТАСТТТТАА	AAAATCAGACA	ATAGGGÀTTC	TAAGAGAGGCTT	TCATGÀCGGCTA	AAC
	djs74-2361.s1 djs74-996.s2 djs74-2689.s1 djs74-2350.s1 djs74-1180.s1 djs74-564.s1		GCTACAAGAAATI GCTACAAGAAATI GCTACAAGAAATI GCTACAAGAAATI GCTACAAGAAATI GCTACAAGAAATI	TT*TACTTTTA TT*TACTTTTAA TT*TACTTTTAA TT*TACTTTTAA TT*TACTTTTAA TT*TACTTTTAA	3AAAATCAGACA AAAAATCAGACA AAAAATCAGACA AAAAATCAGACA AAAAATCAGACA AAAAATCAGACA	ATAGGGATTC ATAgGGAtTC ATAGGGATTC ATAGGGATTC ATAGGGATTC ATAGGGATTC ATAGGGATT	TAAGAGAGGGCTT TAAGAGAGGGCTT TAAGAGAGGGCTT TAAGAGAGGGCTT TAAGAGAGGGCTT	CATGACGGCT CATGACGGCTA CATGACGGCTA CATGACGGCTA CATGACGGCTA CATGACGGCTA	≇AC ¥AC ¥AC ¥AC ¥AC
	djs74-423.s1 djs74-1532.s1 djs74-1802.s1 djs74-237.s1 djs74-1432.s1	- GC - gC - GC - GC - GC - GC	GCTACAAGAAATI GCTACAAGAaat GCTACAAGAAATI ggctacaagaaatt gggtgtttttccco	Tt*tACTTTTAA TT*tACttttaa T <mark>T</mark> *TACTTTTAA ttatactttaa tt*tttogaaaa	AAAATCAGACA AAAATCAGACA AAAATCAGACA AAAATCAGACA AAAAATCAGACA AAAAATCAGACA AAAAATCAGACA	ATAGGGATTC atagggattC ATAGGGATTC atagggaatc acccctttatg	TAAGAGAGGCTT TAAGAGAggctt TAAGAGAGGCTT taagagaggctt gggaatattxxx	CATGACGGCTA Catgacggcta CATGACGGCTA Catgacggcta	
	K K K Prev Ne:	xt > >> >>	> cursor reads	sorted by stran	d and then posi	tion		dism	iiss

- Initially designed for Sanger sequencing (8-10x coverage of 500- to 1000-base reads)
- Introduction of quality values (log transformed error probabilities) was a significant contribution in providing an objective criterion to guide finishing

Aligned Reads Window

30-100x coverage of 50- to 100-base reads from second generation technologies pose a challenge

Aligned Reads Window

Sorting by quality value is a useful guide

No longer need to inspect raw data underlying an individual read

High quality discrepancies can be indicative of misassemblies or nucleotide variants

Hawkeye Schatz *et al.*, 2007; 2011

Integrative genomics viewer (IGV)

Robinson et al., 2011

Navigating to discrepant positions

Highly Discrepant Positions Table

0	0.044					1		*		pos	cont
	0.0%	0	0.0%	10	40.0%r	15	60.0%	0	0.0%	9,096,328	chr7
0	0.0%	2	7.4%	4	14.8%r	21	77.8%	0	0.0%	9,096,331	chr7
0	0.0%	161	100.0%	0	0.0%	0	0.0%r	0	0.0%	10,656,718	chr7
0	0.0%	178	100.0%	0	0.0%r	0	0.0%	0	0.0%	10,656,739	chr7
0	0.0%	12	92.3%	0	0.0%	1	7.7%r	0	0.0%	17,563,643	chr7
13	8.4%	141	91.6%r	0	0.0%	0	0.0%	0	0.0%	24,746,149	chr7
13	8.1%	148	91.9%r	0	0.0%	0	0.0%	0	0.0%	24,746,164	chr7
12	8.6%	126	90.6%r	0	0.0%	1	0.7%	0	0.0%	24,747,122	chr7
17	9.4%	163	90.6%r	0	0.0%	0	0.0%	0	0.0%	24,747,907	chr7
0	0.0%	0	0.0%	183	91.5%r	17	8.5%	0	0.0%	24,747,945	chr7
0	0.0%	0	0.0%	157	94.0%r	10	6.0%	0	0.0%	24,748,343	chr7
0	0.0%	0	0.0%	143	89.9%r	16	10.1%	0	0.0%	24,748,352	chr7
0	0.0%	0	0.0%	131	87.9%r	18	12.1%	0	0.0%	24,748,353	chr7
10	8.5%	0	0.0%	107	91.5%r	0	0.0%	0	0.0%	24,748,629	chr7
12	6.2%	180	93.8%r	0	0.0%	0	0.0%	0	0.0%	24,752,205	chr7

Assembly View

From Manske and Kwiatkowski, Genome Research, 2009

Indicate deviations as overlaid arcs

Consed David Gordon and Phil Green

Indicate deviations with colour and clustering

Indicate deviations with colour and clustering

Scaffold View

Use the y-axis to indicate insert size

LookSeq Manske and Kwiatkowski, 2009

Contig order in the scaffold displayed in overview panel

Schatz *et al.*, 2007

Inconsistent read pairs (red) indicate a misassembly

Read coverage: line plots Read pairs: angled lines Sequence similarity: curved lines Consed

David Gordon and Phil Green

Source DNA

Repeat R

Assembled contigs

Collapsed repeat R

Assembled contigs

Collapsed repeat R Arcs = Read Pairs

Assembled contigs

Collapsed repeat R Arcs = Read Pairs

Arcs + linear ordering : gets complicated fast

ABySS-Explorer

Nielsen et al., InfoVis 2009

Edge = contig Vertex = overlap Squiggle = contig length (one oscillation per 1000 bps)

ABySS-Explorer

Nielsen et al., InfoVis 2009

Edge = contig Vertex = overlap

Squiggle = contig length (one oscillation per 1000 bps)

Green = selected contig Light Purple = selected contig has upstream paired reads in this contig

Dark Purple = selected contig has downstream paired reads in this contig

Edge = contig

Vertex = overlap

Squiggle = contig length (one oscillation per 1000 bps)

ABySS-Explorer

Nielsen et al., InfoVis 2009

Green = selected contig Light Purple = selected contig has upstream paired reads in this contig

Dark Purple = selected contig has downstream paired reads in this contig

ABySS-Explorer

Nielsen et al., InfoVis 2009

Edge = contig Vertex = overlap

Squiggle = contig length (one oscillation per 1000 bps)

Green = selected contig Light Purple = selected contig has upstream paired reads in this contig

Dark Purple = selected contig has downstream paired reads in this contig

ABySS-Explorer Nielsen *et al.*, InfoVis 2009

Edge = contig Vertex = overlap Squiggle = contig length (one oscillation per 1000 bps)

Green = selected contig Blue = predicted scaffold

ABySS-Explorer

Nielsen et al., InfoVis 2009

Edge = contig Vertex = overlap Squiggle = contig length (one oscillation per 1000 bps)

Green = selected contig Blue = predicted scaffold

Contig size is a common metric of assembly quality

Scaffold N50 Half of the genome has been assembled into scaffolds larger than the N50 value

Bar height = contig size Bar width = relative fraction of the genome size

Hawkeye Schatz *et al.*, 2007; 2011

Coverage plots

ABySS-Explorer

Contig quality also an important consideration

Bar colour indicates number of misassembly features discovered by AMOSvalidate

Bar height = contig size Bar width = relative fraction of the genome size

Hawkeye Schatz *et al.*, 2007; 2011

FRCurve - simultaneously measure connectivity and quality

- Each contig has a number of misassembly features (detected by AMOSvalidate)
- Sort contigs by size (largest first) and tally genome coverage for contigs with < threshold missassembly feature counts

From Schatz *et al*. Briefings in Bioinformatics, 2011

Task 5Making Sense of Complex Structures

Task 5 Making Sense of Complex Structures

1 Mbp *Mycoplasma capricolum* genome

ABySS-Explorer

Task 5Making Sense of Complex Structures

Task 5Making Sense of Complex Structures

Vertex = sequencing read Edge = overlap

- Use read clustering (not assembly per se) based on sequence similarity to identify structures of repeat families
- 5320 reads from the *Pisum* sativum (pea) genome representing the Ty1/copia LTRretrotransposon Angela (CAP3 assembled contigs shown below)
- Enabled identification of the most common form of the Angela element and three less frequent deletions

From Novák *et al*. BMC Bioinformatics, 2010

Summary Where visualization is used

- 1 Nucleotide-Level Discrepancies
- 2 Deviant Read Pairs
- **3** Contig Connectivity
- 4 Assembly Evaluation
- **5** Complex Structures

Summary Challenges

- 1 Must address multiple levels of resolution
- 2 Large data sets pose computational and performance challenges
- 3 Rapidly changing field directly affected by innovations in sequencing technology

Acknowledgements

BCGSC Vancouver, Canada ABySS Team: Ka Ming Nip Shaun Jackman Karen Mungall İnanç Birol

Martin Krzywinski Steven Jones

Assembly Visualization David Gordon Mick Watson Simon Andrews Mark Blaxter Peter Cock Tom Freeman Sujai Kumar Giuseppe Narzisi Michael Schatz