CURRENT CHALLENGES IN GENOMIC DATA VISUALIZATION

Cydney Nielsen

BC Cancer Agency

Genome Sciences Centre
Vancouver, Canada

The Data Deluge

Cost per Megabase of DNA Sequence
~\$5,000 in 2001

Sequencing Experiments

De novo assembly

AGCTTCAGATGGACAGATAA
GGCATACAGACTTAGACATA
CCAGACAAGACAGACACAGTA
TACAAGACATAAGCAATACAGA
CCAGACAAGACAGACACAGTA

Re-sequencing

GGCATACAGACTTAGACATA
AGCTTCAGATGGACAGATAA
CCAGACAAGACAGACACAGTA
CCAGACAAGACAGACACAGTA
TACAAGACATAAGCAATACAGA

Reference Genome

Genome Assembly

Enrichment

CCAGACAAGACAGACACAGTA AGCTTCAGATGGACAGATAA
GGCATACAGACTTAGACATA
CCAGACAAGACAGACACAGTA
TACAAGACATAAGCAATACAGA
Reference Genome

$+$

Drew Sheneman, New Jersey - The Newark Star Ledger

Challenge 1

Large number of samples for comparison

"To systematically characterize the genomic changes in hundreds of tumors...and thousands of samples over the next five years"

The Cancer Genome Atlas www.cancergenome.nih.gov

Genome Browsers

Stacked data tracks along a common genome x -axis

UCSC Cancer Genomics Heatmaps

Glioblastoma Copy Number Abnormality, Agilent 244A array ($\mathrm{n}=200$)

Heatmap provides a more condensed view
Zhu et al., Nature Methods, 2009

Challenge 1

Large number of samples for comparison

- Consider what information is needed
e.g. replace with biologically meaningful summary, such as significant change between samples

UCSC Cancer Genomics Heatmaps

Glioblastoma Copy Number Abnormality, Agilent 244A array ($\mathrm{n}=200$)

Summary view (column averages)
Zhu et al., Nature Methods, 2009

Challenge 2

Large number of data types

Genomic rearrangements in cancer (complex representation)

Stephens et al., Cell, 2011

17 mouse genomes (more compact representation)
 in a general tool

Keane et al., Nature, 2011

Challenge 2

Large number of data types

- Compact, customized data encoding

ABySS-Explorer

Represents sequence

- connectivity
- strand
- length
- mapping on reference

Interactively access

- sequence coverage
- scaffolding
reference human genome

inversion event in a human lymphoma genome

Nielsen et al.
Best Paper Award at InfoVis 2009

Challenge 3

Genomic features are sparse

Genome Browsers

LOCAL VIEW

UCSC Genome Browser on Human Mar. 2006 (NCBI36/hg18) Assembly

move <<<\ll<\lll $\ggg \ggg$ zoom in $1.5 x$ (3x) 10x) base zoom out $1.5 x$ (3x) 10x
position/search chr1:10,402,107-11,920,661 gene jump clear size $1,518,555 \mathrm{bp}$. configure

Human chr1, 1 pt corresponds to 480 kb , which is larger than 98% of all human genes!

- Martin Krzywinski

Hilbert Curve

GLOBAL VIEW

Kharchenko et al., Nature, 2011
Anders, Bioinformatics, 2009

Challenge 3

Genomic features are sparse

- Need both overview and detail

Functional axis (perhaps not full genome)

Spark - a genomic data exploration tool

1. Focus on regions of interest (e.g. transcriptional start sites)

2. Interactive cluster visualization

Nielsen et al. in preparation

Challenge 4

No longer one genome but many

1000 Genomes

A Deep Catalog of Human Genetic Variation

Single nucleotide variation

Single nucleotide variation

Integrative Genomics Viewer (IGV)

Robinson et al. Nature Biotechnology, 2011

Structural variation

Bhutkar et al., Genetics, 2008

Challenge 4

No longer one genome but many

- Capture variation on a graph

Sequence variation on a graph

Comeau et al., Mol. Biol. Evol., 2010

Users may require more time to learn how to interpret graph representations, but such graphs are likely to scale better and may prove more powerful for analysis

Sequence variation on a graph

Paten et al., Genome Research, 2011

Challenge 5

Consed Genome Assembly and Finishing Tool

David Gordon and Phil Green
Good example of integrated visualization and computational analysis functionality

Challenge 5

Need to integrate computation

- High interactivity, low memory overhead

Avoid storing large data sets locally Popularity of web-based tools

Evolving sequencing technologies

Summary

1 Large number of samples for comparison
2 Large number of data types
3 Genomic features are sparse
4 No longer one genome but many
5 Need to integrate computational analysis

Michael Smith Foundation for Health Research

