CURRENT CHALLENGES IN GENOMIC DATA VISUALIZATION

Cydney Nielsen

BC Cancer Agency Genome Sciences Centre Vancouver, Canada

The Data Deluge

Sequencing Experiments

De novo assembly

Re-sequencing

Enrichment

Drew Sheneman, New Jersey - The Newark Star Ledger

Large number of samples for comparison

"To systematically characterize the genomic changes in hundreds of tumors...and thousands of samples over the next five years"

The Cancer Genome Atlas www.cancergenome.nih.gov

Genome Browsers

Stacked data tracks along a common genome x-axis

UCSC Cancer Genomics Heatmaps

Glioblastoma Copy Number Abnormality, Agilent 244A array (n=200)

Heatmap provides a more condensed view

Zhu et al., Nature Methods, 2009

Large number of samples for comparison

• Consider what information is needed

e.g. replace with biologically meaningful summary, such as significant change between samples

UCSC Cancer Genomics Heatmaps

Glioblastoma Copy Number Abnormality, Agilent 244A array (n=200)

Zhu et al., Nature Methods, 2009

Large number of data types

Genomic rearrangements in cancer (complex representation)

Stephens et al., Cell, 2011

Still difficult to represent many data types in a general tool

Keane et al., Nature, 2011

Large number of data types

• Compact, customized data encoding

ABySS-Explorer

Represents sequence

- connectivity
- strand
- length
- mapping on reference

Interactively access

- sequence coverage
- scaffolding

Genomic features are sparse

Genome Browsers

LOCAL VIEW

Human chr1, 1 pt corresponds to 480 kb, which is larger than 98% of all human genes! - *Martin Krzywinski*

Hilbert Curve

GLOBAL VIEW

Kharchenko *et al.*, Nature, 2011 Anders, Bioinformatics, 2009

Genomic features are sparse

 Need both overview and detail Functional axis (perhaps not full genome)

Spark – a genomic data exploration tool

1. Focus on regions of interest (e.g. transcriptional start sites)

4. Interactive cluster visualization

Nielsen et al. in preparation

No longer one genome but many

1000 Genomes A Deep Catalog of Human Genetic Variation

Single nucleotide variation

TACG	TGCACCAAGACCACCAGTCTTCCCCCGTCTTTC
TAAGCTTACG	TGCACCAAGACCACCATACTTCCCAG CTCGACACAAGA
GTAAGCTTACG	TGCACCAAGACCACCAGTCTTCCC CTCGACACAAGA
GTAGTAAGCTTACG	TGCACCAAGACCACCAGAGATC CTCGACACAAGA
TTAGTAGTAAGCTTACG	TGCACCAAGACCACCAGGC CTGTCTCGACACAAGA
TTAGTAGTAAGCTTACG	TGCACCAAGACCACCAGTC CAGTCTTTCTCGACACAAGA
CTTAGTAGTAAGCTTACG	TGCACCAAGACCACCAGT CCAGTCTTTCTCGACACAAGA
CTTAGTAGTAAGCTTACG	TGCACCAAGACCACCAG CCAGTCTTTCTCGACACAAGA
CCTTAGTAGTAAGCTTACG	TGCACCAAGACCACCAC CCAGTCTTTCTCGACACAAGA
CCTTAGTAGTAAGCTTACG	TGCACCAAGACCACCAG TCCCAGTCTTTCTCGACACAAGA
ACCTTAGTAGTAAGCTTACG	TGCACCAAGACCACCA TGCCCAGTCTTTCTCGACACAAGA
ACCTTAGTAGTAAGCTTACG	TGCACCAAGACCACCA TTCCCAGTCTTTCTCGACACAAGA
TTACCTTAGTAGTAAGCTTACG	TGCACCAAGACCAC CTTCCCAGTCTTTCTCGACACAAGA
AAAACGTTACCTTAGTAGTAAGCTTACG	TGCACAAA CTTCCCAGTCTTTCTCGACACAAGA
AAAACGTTACCTTAGTAGTAAGCTTACG	TGCACCAA GTCTTCCCAGTCTTTCTCGACACAAGA
CGAAAAACGTTACCTTAGTAGTAAGCTTACG	TGCAC AGTCTTCCCAGTCTTTCTCGACACAAGA
ACGAAAAACGTTACCTTAGTAGTAAGCTTACG	TGCC CAGTCTTCCCAGTCTTTCTCGACACAAGA
ACGAAAAACGTTACCTTAGTAGTAAGCTTACG	TGC CCACCTGTCTTCCCAGTCTTTCTCGACACAAGA
AACGAAAAACGTTACCTTAGTAGTAAGCTTACG	TTC ACCACCAGTCTTCCCAGTCTTTCTCGACACAAGA
AACGAAAAACGTTACCTTAGTAGTAAGCTTACG	TGC GACCACCAGTCTTCCCAGTCTTTCTCGACACAAGA
AACGAAAAACGTTACCTTAGTAGTAAGCTTACG	TGC AAGACCACCAGTCTTCCCAGTCTTTCTCGACACAAG
AAAAACGAAAAACGTTACCTTAGTAGTAAGCTTACG	AAGACCACCAGTCTTCCCAGTCTTTCTCGACACACG
TA <mark>N</mark> AAACGAAAAACGTTACCTTAGTAGTAAG <mark>A</mark> TTAC	CCAACACCACCAGTCTTCCCAGTCTTTCTCGACACA
ATAAAAACGAAAAACGTTACCTTAGTAGTAAGCTTA	CCAACACCACCAGTCTTCCCAGTCTTTCTCGACACA
ATAAAAACGAAAAACGTTACCTAAGTAGTAAGAT	GCACCAAGACCACCAGTCTTCCCAGTCTTTCTCGA
AAATAAAAACGAAAAACGTTACCTTTGTAGTAGGCT G	TGCACCAAGACCACCAGTCTTCCCAG <mark>T</mark> CTTTC <mark>T</mark> CG
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	TGCACCAAGACCACCAGTCTTCCCAGTCTTTCT
AAAAAAAACGAAAAACGTTACCTTAGTAGTAAGCT ACG	TGCACAAAGACCACCAGTCTTCCCAGTCTTTC
TTATAAAAAAAACGAAAAACGTTACCTTAGTAGTA TACG	CGCCCCAAGCCCACCAGTCTTCCCAGTCTTTC
TTCTAAATAAAAACGAAAAACGTTACCTTCTTAGT TTACG	TGCACCAAGACCACCAGCCTCCCAGTCTTT

TTCTTTATAAAAACGAAAAACGTTACCTTAGTAGTAAGCTTACGAGCACCAAGACCACCAGTCTTCCCAGACTTTCGCGAAACAAGA

Ossowski et al. Genome Research, 2008

Single nucleotide variation

Integrative Genomics Viewer (IGV)

Robinson et al. Nature Biotechnology, 2011

Structural variation

Bhutkar et al., Genetics, 2008

No longer one genome but many

• Capture variation on a graph

Sequence variation on a graph

Comeau et al., Mol. Biol. Evol., 2010

Users may require more time to learn how to interpret graph representations, but such graphs are likely to scale better and may prove more powerful for analysis

Sequence variation on a graph

Paten et al., Genome Research, 2011

Consed Genome Assembly and Finishing Tool

File Navigate I	nfo Color Di <mark>n</mark> Misc Sort			Help
standard.fasta.scr	een.ace.1	Contig1	Some Tags Pos: I	clear
Search for String	Compl Cont Compare Cont	Find Main Win Err/10kb:	313.29	
	770 78	:0 790 800	0 810 820 830	4
CONSENSUS	GGGCTACAAGAAAT	TTT*TACTTTTAAAAAATCAG	ACAATAGGGATTCTAAGAGAGGCTTCATGAC	GGCTAAC
djs74-2361.s1 djs74-996.s2 djs74-2689.s1 djs74-2350.s1 djs74-1180.s1 djs74-564.s1	GGGCTACAAGAAAT GGGCTACAAGAAAT GGGCTACAAGAAAT GGGCTACAAGAAAT GGGCTACAAGAAAT GGGCTACAAGAAAT	TTT *TACTTTTAaaAAATCAGA TTT *TACTTTTAAAAAAATCAGA TTT *TACTTTTAAAAAAATCAGA TTT *TACTTTTAAAAAAATCAGA TTT *TACTTTTAAAAAAATCAGA TTT *TACTTTTAAAAAAATCAGA	ACAATAGGGATTCTAAGAGAGGCTTCATGAC ACAATAgGGAtTCTAAGAGAGGGCTTCATGAC ACAATAGGGATTCTAAGAGAGGGCTTCATGAC ACAATAGGGATTCTAAGAGAGGGCTTCATGAC ACAATAGGGATTCTAAGAGAGGGCTTCATGAC ACAATAGGGATT <mark>XXXXXXXXXXXXXXXXXXXXXXXXXXXXX</mark>	GGCTAAC GGCTAAC GGCTAAC GGCTAAC GGCTAAC
djs74-423.s1 djs74-1532.s1 djs74-1802.s1 djs74-237.s1 djs74-1432.s1	 GGGCTACAAGAAAT gGGCTACAAGAAAT GGGCTACAAGAAAT GGGCTACAAGAAAT gggctacaagaaat agagtgtttttccc 	TTt*tACTTTTAAAAAATCAGA TTT*tACttttaaaAAATCAGA TT <mark>T</mark> *TACTTTTAAAAAAATCAGA tttatacttttaaaaaatcgga ctt*tttcgaaaaaancagagg	ACAATAGGGATTCTAAGAGAGGCTTCATGAC ACAatagggattCTAAGAGaggcttCatgac ACAATAGGGATTCTAAGAGAGGGCTTCATGAC acaataggga a tctaagagaggcttcatgac gtgacccctttatgggaatattxxxxxxxx	GGCTAAC ggctaAC GGCTAAC ggctaac xxxxxxxx
<	xt > >> cursor reads	sorted by strand and then p	position	dismiss //

David Gordon and Phil Green

Good example of integrated visualization and computational analysis functionality

Need to integrate computation

 High interactivity, low memory overhead Avoid storing large data sets locally Popularity of web-based tools Evolving sequencing technologies

Summary

- 1 Large number of samples for comparison
- 2 Large number of data types
- 3 Genomic features are sparse
- 4 No longer one genome but many
- 5 Need to integrate computational analysis

