
Trans-ABySS v1.3.5: User Manual

September, 2012

Prepared by Readman Chiu, Ka Ming Nip
Contact: rchiu@bcgsc.ca, kmnip@bcgsc.ca
On behalf of: Tony Raymond, Shaun Jackman, Karen Mungall, Inanc Birol

Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency
Vancouver BC Canada V5Z 4S6

Table of Contents
1. Generating Transcriptome Assemblies with ABySS..2

[1.1] Installing ABySS ...2
[1.2] Choosing k-mer values for your assemblies...2
[1.3] Running ABySS..2

2. Installing Trans-ABySS...5
[2.1] bin/..5
[2.2] setup..6
[2.3] configs/...7
[2.4] input/...9
[2.5] annotations/...9
[2.6] analysis/ and utilities/...10
[2.7] sample_output/..11

3. Running Trans-ABySS...12
[3.1] Stage 0..15
[3.2] Stage 1..17
[3.3] Stage 2..18
[3.4] Stage 3..18
[3.5] Stage 4..18
[3.6] Stage 5..19
[3.7] Stage 6..19
[3.8] Stage 7..19
[3.9] Stage 8..19

4. Analysis Output..20
[4.1] Fusion (fusions.py)...20
[4.2] SNV/INDEL (snv_caller.py)..22
[4.3] Novel Splicing (model_matcher.py)...24
[4.4] Gene coverage..27

5. Miscellaneous...27
[5.1] Open Reading Frame Effect Descriptors..27

6. Technical Support...27

1

mailto:rchiu@bcgsc.ca
mailto:kmnip@bcgsc.ca

1. Generating Transcriptome Assemblies with ABySS

[1.1] Installing ABySS

The input to Trans-ABySS (TA) are one or more ABySS (1.3.2 or above) assemblies. This section
describes only one of the many ways to generate transcriptome assemblies with ABySS 1.3.2.

ABySS can be compiled as described in its README. Should you run into any difficulties in
compiling or running ABySS, please contact the ABySS Google Group:
abyss-users@googlegroups.com

[1.2] Choosing k-mer values for your assemblies

Transcriptome (RNAseq) samples are composed of transcripts with a wide range of expression levels.
Because it is observed that reconstruction of transcripts tend to be performed with various degrees of
completeness at different k-mer values, TA takes the approach of generating assemblies using a range
of k-mer values and then merging the different k-assemblies into a single meta-assembly. The choice
of k-mer sizes depend on the read length of an RNAseq library and we suggest the following k-mer
sizes for the given read-lengths:

read length (bp) k-mer sizes total number of assemblies

50 26, 28, 30, … , 46, 48, 50 13

75 38, 40, 42, … , 70, 72, 74 19

100 52, 54, 56, … , 92, 94, 96 23

Please note that the above is just a guideline based on our experience with the given read-lengths. The
choice is basically a compromise between performance (level of reconstruction) and practicality (time,
computing resources, etc). Users can experiment with their own k-mer sizes to suit their sample
characteristics and computing resources.

[1.3] Running ABySS

Before running ABySS to generate the assemblies, set up a directory to store your assemblies for each
k-mer size:

mkdir $name

where $name is the library name.

In this newly created directory, make a text file called $name.in that lists the paths to the input reads,
one read file per line. The input reads can be .bam, .fq.gz (.fastq.gz), Illumina export/qseq files, or
any other formats that ABySS can read. This text file will also be required in TA Stage 0. Please read
Section "[3.1] Stage 0" for more details.

Since you will be generating paired-end assemblies, the list of reads files in $name.in should be

2

mailto:abyss-users@googlegroups.com

ordered like so:

<first pair, read file 1>
<first pair, read file 2>
<second pair, read file 1>
<second pair, read file 2>
<third pair, read file 1>
<third pair, read file 2>

Please read Sections "[3.1] Stage 0" (b) and "[3.3] Stage 2" for more details.

Here is an example of $name.in and the name of the reads files:

/path/to/reads/s_5_1_concat_qseq.txt
/path/to/reads/s_5_2_concat_qseq.txt
/path/to/reads/s_6_1_concat_qseq.txt
/path/to/reads/s_6_3_concat_qseq.txt

This is a sample command to generate one paired-end assembly with ABySS:

cd $name && mkdir k$k && cd k$k && \
exec abysspe E=0 n=5 v=v k=$k \

name=$name \
in=`<../$name.in` \
OVERLAP_OPTIONS='noscaffold' \
SIMPLEGRAPH_OPTIONS='noscaffold' \
MERGEPATHS_OPTIONS='greedy' \
mp=''

where $k is the k-mer size, and $name is the library name. The assembly output files would be
generated in the directory called k$k, which is strictly required for TA. You can vary the options n, E,
c, s, etc. to generate your assemblies, but please keep the 'noscaffold' option for
OVERLAP_OPTIONS and SIMPLEGRAPH_OPTIONS because TA does not deal with scaffolds.

3

Please execute the above command (in a cluster job script if necessary) for all k-mer sizes in the same
directory so you would have one directory per k-mer size. For example, these are the directories and
files created if the library $name has 50-bp reads:

$name/
k26/
k28/
...
k48/
k50/
$name.in

After the assemblies have finished, please check for error messages in the log files and make sure that
these files exist in each k-directory:

$name1.fa
$name2.adj
$name3.dist
$name3.fa
$name4.fa (can be empty)
$name5.fa (can be empty)
$name5.adj
$name5.path
$name6.fa
$namecontigs.fa (a symbolic link to $name6.fa)
$nameindel.fa

If there are no missing output files or error messages, you have generated the ABySS assemblies
needed for TA. If you decided to generate the assemblies using your own methods or pipelines, then
you must rename any files and/or construct a directory that looks like so:

assemblies_parent_directory/
$name.in
k26/

$name1.fa
$name2.adj
$name3.dist
$name3.fa
$name4.fa
$name5.fa
$name5.adj
$name5.path
$name6.fa
$namecontigs.fa
$nameindel.fa
...

k28/
...
k48/
k50/

Note: $name is the name of your library

4

2. Installing Trans-ABySS

Upon extracting the TA package, you should see the following directories/files:

bin/
setup
configs/
input/
annotations/
utilities/
analysis/
sample_output/

Note: From now on, the directory containing the above files/directories is denoted as <TA_DIR>

[2.1] bin/
TA requires the following external software packages for various purposes:

Software Version
(R)equired /
(O)ptional

Purpose Download

BWA
0.5.9-r16
or above

R Align reads to contigs http://sourceforge.net/projects/bio-bwa/files/

Bowtie or
Bowtie2

O
Align reads to contigs; an
alternative to BWA

http://bowtie-bio.sourceforge.net/index.shtml

Pysam
0.1.2 or
above

R
Samtools Python API for
extracting read support in
analysis modules

http://code.google.com/p/pysam/downloads/list

Samtools 0.1.18 R View/create BAM files
http://sourceforge.net/projects/samtools/files/samt
ools/

ABySS
1.3.2 or
above

R Assembly and stage 0 of TA
http://www.bcgsc.ca/platform/bioinfo/software/ab
yss/releases/1.3.2

xa2multi.pl - R
Convert secondary alignments
kept in XA tag into individual
records

http://sourceforge.net/projects/bio-bwa/files/

Blat
34 or
above

R
Align contigs to reference
genome

http://users.soe.ucsc.edu/~kent/src/

GMAP O
Align contigs to reference
genome; an alternative to Blat

http://research-pub.gene.com/gmap/

Python 2.6 R
For running all analysis
modules

http://www.python.org/getit/releases/2.6/

Perl 5.8 R For running Perl wrappers http://www.perl.org/get.html

mqsub - R
Submission of multiple jobs to
cluster

provided in /bin in TA v1.3.5

We recommend users put the executables (if any exists) of the above software inside TA's bin directory
and include the path of the bin directory in the $PATH variable in the setup file. TA stage 0 (FEM)
requires two special-purpose modules from ABySS 1.3.2+, abyssfiltergraph and abyss

5

http://www.perl.org/get.html
http://www.python.org/getit/releases/2.6/
http://research-pub.gene.com/gmap/
http://users.soe.ucsc.edu/~kent/src/
http://sourceforge.net/projects/bio-bwa/files/
http://www.bcgsc.ca/platform/bioinfo/software/abyss/releases/1.3.2
http://www.bcgsc.ca/platform/bioinfo/software/abyss/releases/1.3.2
http://sourceforge.net/projects/samtools/files/samtools/
http://sourceforge.net/projects/samtools/files/samtools/
http://code.google.com/p/pysam/downloads/list
http://bowtie-bio.sourceforge.net/index.shtml
http://sourceforge.net/projects/bio-bwa/files/

junction. These two modules are compiled when ABySS is compiled but are not installed by default.
Therefore, you must copy the executables for these two modules into either TA's bin directory,
ABySS's installation directory, or anywhere accessible by TA.

[2.2] setup

The purpose of the setup file is to define all the proper environment variables needed by TA. To
ensure all the dependent software can be accessible, a typical TA job begins with the Unix command:

source <TA_DIR>/setup

The setup file from the download package looks like so:

export TRANSABYSS_VERSION=1.3.5
export TRANSABYSS_PATH=/your/transabyss/code/directory
export PERL5LIB=$TRANSABYSS_PATH/wrappers:$PERL5LIB:/your/perl/libraries
export PYTHONPATH=/your/python/path:$PYTHONPATH:$TRANSABYSS_PATH
export ABYSSPATH=/directory/containing/abyss/executables
export LD_LIBRARY_PATH=/your/shared/libraries:$LD_LIBRARY_PATH
export PATH=$TRANSABYSS_PATH/bin:$ABYSSPATH:$LD_LIBRARY_PATH:$PYTHONPATH:$PATH

Users must update the setup file with all the pertinent file paths before attempting to run TA. The
following environment variables must be defined because they are referenced in the wrapper scripts:

TRANSABYSS_VERSION
TRANSABYSS_PATH (note that this is actually <TA_DIR>)

After you have installed the required software and configured your setup file, you can check the paths
with this command:

sh <TA_DIR>/checkprereq.sh

A few notes on cluster use:
Because of the sheer volume of transcriptome data, TA assumes the use of a cluster for any practical
performance. The cluster job shell scripts created by TA are intended for the Sun Grid Engine (version
6.2u5). Users might need to modify the relevant modules (ie. wrappers/analyze.pl,
wrappers/setup.pl, utilities/submitjobs.sh) for each stage of TA accordingly to fit your cluster
environment. Experience in programming in Perl/Python and submitting jobs to your cluster would be
of great value. Please read Section "3. Running Trans-ABySS" for more details on running TA. To
ensure seamless submission of cluster jobs, please set up automatic login to your cluster head-node.
Ask your system administrator for help or simply do a Google search for "SSH login without
password".

6

[2.3] configs/

(a) Setting up transcriptome.cfg

The configuration file transcriptome.cfg specifies how the different steps of the TA pipeline are run.
It contains the following major sections:

[commands]
Contains the default command options for running each script.

[memory]
Contains the default memory request for cluster jobs.

[genome]
Contains the paths to your reference genomes on the cluster.

[contact]
Contains the default email address to contact if the cluster jobs failed.

Projects and libraries
TA processes data on a per-library basis. Libraries are grouped under projects; each library must
belong to a single project. Projects are configured as individual sections under the above major
sections in transcriptome.cfg. Each project section contains a topdir attribute which specifies the
directory under which the output of each library belonging to the project is stored under. The path for
topdir must exist before running TA for a library under the particular project. Projects can have their
own specific running parameters, which is to be applied on all libraries belonging to the same project.
Here is an example project:

[your_project_name_here]
r2c_sammem: 10G
tar2c.pycmd: CONTIGS READSLIST p LIB P PROJECT o PATH/reads_to_contigs t 8
x
contact: helloworld@email.com
topdir: /your/working/directory/for/this/project
reference: hg19

The reference attribute specifies the name of the reference genome and is required if any analysis is
to be performed on the library. If your project does not have a reference genome, simply define
reference as none and only stages 0, 2, and 3 can be run. Other attributes are only needed if the
default settings need to be overridden for the project. The mem and cmd postfixes distinguish what to
override for the project.

(b) Setting up model_matcher.cfg

This file specifies the gene models that are used by the module model_matcher.py for contig-
transcript mapping. The file is organized into sections where each section represents a reference
genome. The gene model files which are referenced here are expected to be present in the
annotations folder. See Section "2.5 annotations/" for instructions to download annotation files.

7

Each gene model is given a one-letter alias for quick referencing. For example, e represent the
Ensembl gene model file. A comma-separated "order" field is used to specify the priority of the gene
models when comparisons are made. Order is also used in breaking ties when the same contig can be
mapped to genes from multiple models. An earlier model given in the order will be given precedence
over the later ones when a single transcript is assigned to a contig. Here is an example of the contents:

[hg19]
k: knownGene_ref.txt
e: ensGene_ref.txt
r: refGene.txt
a: acembly_ref.txt
order: k,e,r,a

(c) Setting up job_script.cfg

In TA 1.3.5, we have started creating jobs scripts with templates created by the user. The purpose of
creating job scripts with templates is to allow external (non-GSC) users to easily interface the TA
pipeline with their high performance computing (HPC) environment.

Currently, only jobs submitted in Stage 0 (prepare reads) and Stage 2 would use these templates.
However, all job scripts will be created with templates starting with the public release of TA 1.4.*.

This is the content of job_script.cfg:

local: gsc_local.txt
cluster_basic: gsc_sge_basic.txt
cluster_parallel: gsc_sge_parallel.txt
predessors_list_delimiter: ,
qsub_return_string: Your job ${JOBID} .* has been submitted

• local specifies the template for local job scripts.
• cluster_basic specifies the basic template for cluster job scripts.
• cluster_parallel specifies the template for multi-threaded cluster job scripts.
• predessors_list_delimiter specifies the delimiter for the list of predecessor job ids.
• qsub_return_string specifies the string returned when a cluster job has been submitted. $

{JOBID} is the part of the string containing the job id.

We have only provided the templates (gsc_*.txt) for the Sun Grid Engine of our HPC cluster. You
must create your own templates for your HPC environment.

The following variables in templates would be replaced with the appropriate values when job scripts
are generated:

• ${JOB_NAME} is the name of the job.
• ${WORKING_DIR} is the working directory of the job. The stdout and stderr logs would be place

in this directory.
• ${PREDESSORS} is the list of predecessors’ job id. Note that predessors_list_delimiter

from jobs_script.cfg would be used here.

8

• ${MEM} is the amount memory to request for the job.
• ${THREADS} is the number of CPUs for the parallel job.
• ${SETUP_PATHS} would be replaced with the command, source /path/to/setup
• ${CONTENT} is the commands to be run in the job. This variable is mandatory for all templates.

The following variables must be defined properly:
• $TMPDIR is the prefix for temporary files. Typically, the scheduler of your HPC cluster

configures it automatically for each job. Otherwise, please configure it in the template to use the
cluster node’s local temporary directory along with a unique prefix, ie.
TMPDIR=/tmp/$JOB_ID.$TASK_ID.$QUEUE.

[2.4] input/

An input file is what initiates the TA pipeline. There is no restrictions on how to name an input file. As
discussed, TA analysis is performed on a per-library basis; therefore each line in the input file
represents a single library and a single input file can contain multiple lines.

The format of each line in an input file contains 4 space-separated columns:

<LIBRARY> <ABYSS VERSION> <ASSEMBLIES DIR> <PROJECT NAME>

• <LIBRARY> is the library name
• <ABYSS VERSION> is the version number of ABySS used for the transcriptome assembly
• <ASSEMBLIES DIR> is the path to the directory containing the library's multi-k-mer assemblies
• <PROJECT NAME> is the project name, which has to be defined in transcriptome.cfg

An example input file:

L00001 1.3.2 /abyss/assembly/L00001 your_project_name_here
L00002 1.3.2 /abyss/assembly/L00002 your_project_name_here
L00003 1.3.2 /abyss/assembly/L00003 your_project_name_here

It is important that the assembly directories are set up as described in Section "[1.3] Running ABySS".

[2.5] annotations/

Analysis modules of TA require comparisons to a reference genome and gene annotation files. TA
organizes annotation files by genome under the annotations folder, for example:

annotations/
hg19/

genome.2bit
splice_motifs.fa (copied from annotations/shared)
[rest of annotation files]

shared/ (provided)

9

splice_motifs.txt

TA mainly uses the annotation files available from the UCSC genome browser
(ftp://hgdownload.cse.ucsc.edu/goldenPath/<genome>/database) for this purpose. A list of files
required (<genome>_annot.txt) and a downloading script (<genome>_annot.sh) available for the
genomes hg18, hg19, and mm9 are provided in the annotations folder for executing the downloads
and running the following processing steps. This is an example of how to use the provided shell script
to get hg19 annotation files:

cd <TA_DIR>/annotations
./hg19_annot.sh hg19/ hg19_annot.txt hg19 <TA_DIR>

where:
hg19/ is the destination folder
hg19 is the name of the genome

The script uses wget for downloading. Note that a snp1xx.txt.gz is included in all genome's file
lists. This dbSNP file is used to annotate the snv/indel events detected. To speed up this annotation
process, the user needs to run this command to split up the dbSNP annotation by chromosome:

split_dbsnp.sh ./split_dbsnp.sh <TA_DIR>/annotations/<genome>/snp1xx.txt <TA_DIR>

The user is expected to have the single reference genome sequence FASTA file available on the cluster
for contig alignments. For example, the reference genome hg19 can be downloaded from:

ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/spe
cial_requests/ .

After that, put the path to the downloaded reference FASTA file in configs/transriptome.cfg under
[genomes], ie.

[genomes]
hg19: /path/to/your/hg19/fasta_file/here

A <genome>.2bit version of the same genome sequence is expected to be present in the genome folder
for quick random access to the reference sequence. A <genome>.2bit file can be generated from the
utility faToTwoBit available from:

http://users.soe.ucsc.edu/~kent/src .

[2.6] analysis/ and utilities/

These folders contain the analysis modules written in Python.

10

https://webmail2.bcgsc.ca/owa/redir.aspx?C=334f988bf9c642f9b1e4f8b77ada820b&URL=http%3A%2F%2Fusers.soe.ucsc.edu%2F~kent%2Fsrc
ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/
ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/

[2.7] sample_output/

We have provided sample output files for our sample library. We encourage users to run TA on the
sample library. This is a great exercise to get familiar with the process for setting up your project and
running TA. In addition, this exercise may also help you check whether the required software have
installed properly. Otherwise, it is very unlikely that you will get the same output files.

Before you begin, make sure you have installed and set up ABySS 1.3.2 and Trans-ABySS 1.3.5
properly. Please refer to the Sections "[1.1] Installing ABySS", "[2.1] bin/", "[2.5] annotations/" for
details.

Step 1. Generate the multi-kmer transcriptome assemblies with ABySS 1.3.2. Please refer to Section
"[1.3] Running ABySS" for details.

These are the input reads for the sample library:

<TA_DIR>/sample_output/ABySS/SampleProject/abyss1.3.2/sim0003/reads_1_export.fq
<TA_DIR>/sample_output/ABySS/SampleProject/abyss1.3.2/sim0003/reads_2_export.fq

We used k-mer sizes {62, 64, 66, 68, 70, 72, 74} and the ABySS settings described in Section [1.3]. We
called the sample library "sim0003".

Step 2. Set up a new working directory for TA and put the path as topdir under [SampleProject] in
<TA_DIR>/configs/transcriptome.cfg:

[SampleProject]
topdir: /path/to/your/topdir/here
reference: hg19

Please refer to Section "[2.3] configs/" for details.

Step 3. Set up the input file like so:

sim0003 1.3.2 /path/to/your/abyssassemblies/here SampleProject

Please refer to Section "[2.4] input/" for details.

Step 4. Run TA from stages 0, and 2 to 8 as described in Section "3. Running Trans-ABySS". After
running stage 0, you can skip stage 1 and copy our JAGUAR BAM file and its index

<TA_DIR>/sample_output/TransABySS/SampleProject/sim0003/Reads_to_genome/
output.jag.sorted.bam
output.jag.sorted.bam.bai

to your "Reads_to_genome" directory.

11

3. Running Trans-ABySS

Before running TA on any new libraries, please check:

1. Your ABySS multi-k-mer transcriptome assemblies have completed successfully. There should
be no errors in the logs and all output files are present. The directory structure and names of the
output files of your assemblies are adjusted to be compatible for . Please refer to Section "[1.3]
Running ABySS" for more details.

2. Your "project" is set up correctly in config/transcriptome.cfg and the directory path for
topdir exists. Note that topdir defines where will place its output for the project. Please
refer to Section "[2.3] configs/" for more details.

3. Your input file is set up correctly. Particularly, check whether the library name and the path to
the assemblies directory are correct. Please refer to Section "[2.4] input/" for more details.

Figure 1 shows an overview of TA. The pipeline is divided into 9 stages (0 to 8). Each stage is
described in this section.

12

FEM: Filter, extend, merge assemblies
R2G: Reads-to-genome alignments
R2C: Reads-to-contigs alignments
C2G: Contigs-to-genome alignments

Stage 3 is no longer available and has been merged to Stage 2.

13

Stage 0:

Stage 1:

Stage 2:

Stage 4:

Stage 5:

Stage 6:

Stage 7:

FEM
prepare
reads

R2G

R2C

C2G track

splicing

fusion

snv,
indel

Stage 8:
gene

coverage

Figure 1. An overview of the Trans-ABySS pipeline

Abbreviations used in this section:
<HEAD_NODE> name of the cluster head node

<INPUT> path to the input file

<TOPDIR> path to the project directory that holds the output for each library

<LIBRARY> name of the library, as known as $name in previous section

<ASSEMBLY> path to the directory containing the ABySS multi-k-mer assemblies

<STAGE> the stage number

Before running any scripts from TA, you need to set up your environment with this command:

source <TA_DIR>/setup

To understand the usage and available parameters for TA:

<TA_DIR>/wrappers/transabyss.sh h

To run each stage on the cluster with the TA wrapper:

<TA_DIR>/wrappers/transabyss.sh \
c <HEAD_NODE> \
i <INPUT> \
<STAGE>

Suppose <INPUT> contains multiple libraries and you want to run TA on one particular library called
<LIBRARY>, you can run the wrapper like so:

<TA_DIR>/wrappers/transabyss.sh \
c <HEAD_NODE> \
i <INPUT> \
<STAGE> \
l <LIBRARY>

Now, suppose you want to run TA on <N> libraries starting with library called <LIBRARY> in <INPUT>,
you can run the wrapper like so:

<TA_DIR>/wrappers/transabyss.sh \
c <HEAD_NODE> \
i <INPUT> \
<STAGE> \
s <LIBRARY> \
n <N>

14

[3.1] Stage 0

Three tasks are preformed in this step.

(a) Set up the working directories for TA.

command:

<TA_DIR>/wrappers/setup.pl \
<INPUT> \
make_dir \
cluster <HEAD_NODE>

TA will set up the directories and symbolic links like so:

<TOPDIR>/
<LIBRARY>/

Reads_to_genome/
Assembly/

current > ./abyss1.3.2
abyss1.3.2/

fusions/
k$k1/
...
k$kn/
merge/
novelty/
reads_to_contigs/
snv/
source > <ASSEMBLY>
tracks/

(b) Prepare reads for alignments to contigs.

command:

<TA_DIR>/wrappers/setup.pl \
<INPUT> \
get_reads \
cluster <HEAD_NODE>

input files:
<ASSEMBLY>/<LIBRARY>.in
output files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/reads_to_contigs/<LIBRARY>.in

If the input reads for the ABySS assemblies are .bam or .fq.gz files, then the reads directory would
not be created under the reads_to_contigs directory and reads_to_contigs/<LIBRARY>.in would
be a symlink to source/<LIBRARY>.in. Otherwise, cluster jobs would be submitted to
convert/compress read files to .fq.gz.

15

If you did not follow our aforementioned method to generate your paired-end assemblies with ABySS,
this part of stage 0 might not work for you. In this case, you must create
reads_to_contigs/<LIBRARY>.in yourself. reads_to_contigs/<LIBRARY>.in is in the same
format as described in Section "1.3 Running ABySS".

You can skip this part and Stage 2 if you want to align reads to contigs yourself.

(c) Filter assemblies, extend contigs, merge assemblies (FEM).

command:

<TA_DIR>/wrappers/setup.pl \
<INPUT> \
fem \
cluster <HEAD_NODE>

TA takes the output of the multiple-k ABySS assemblies and performs FEM to generate a single meta-
assembly for analysis.

(i) Filter assemblies:
input files:
<ASSEMBLY>/k*/<LIBRARY>contigs.fa
<ASSEMBLY>/k*/<LIBRARY>5.adj
<ASSEMBLY>/k*/<LIBRARY>5.path
output:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/k*/<LIBRARY>f.fa

The input assembly (<LIBRARY>contigs.fa) is filtered with the following criteria:
● Removes all contigs less than 2k-1 in size
● Removes island contigs (contigs that have no neighbors in the ABySS adjacency graph) less

than or equal to 150bp in size

(ii) Extend contigs and indel bubbles:
input files:
<ASSEMBLY>/k*/<LIBRARY>1.fa
<ASSEMBLY>/k*/<LIBRARY>2.adj
<ASSEMBLY>/k*/<LIBRARY>3.fa
<ASSEMBLY>/k*/<LIBRARY>4.fa
<ASSEMBLY>/k*/<LIBRARY>5.fa
<ASSEMBLY>/k*/<LIBRARY>5.dist
<ASSEMBLY>/k*/<LIBRARY>5.adj
<ASSEMBLY>/k*/<LIBRARY>5.path
<ASSEMBLY>/k*/<LIBRARY>indel.fa
output:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/k*/<LIBRARY>j.fa
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/k*/<LIBRARY>b.fa

ABySS single-end contigs (<LIBRARY>3.fa, <LIBRARY>4.fa, <LIBRARY>5.fa) are extended with
the following criteria:

16

● Extends 1-in 1-out contigs which have read pair support between flanking contigs
● The number of read pairs required is the value of the n parameter from the ABySS assembly
● Excludes 1-in 1-out contigs used in the final stage of assembly

ABySS indel bubbles (<LIBRARY>indel.fa) are extended as long as there is no ambiguity in
adjacency.

(iii) Combining output from (i) and (ii):
input files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/k*/<LIBRARY>f.fa
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/k*/<LIBRARY>j.fa
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/k*/<LIBRARY>b.fa
output files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/k*/<LIBRARY>contigs.fa

(iv) Merge assemblies from (iii):
input files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/k*/<LIBRARY>contigs.fa
output files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/merge/<LIBRARY>contigs.fa

The filtered and extended assemblies (iii) are merged into a single meta-assembly (iv) where a contig is
removed if it has an exact, full length match to its sequence in an assembly of smaller k-mer size.

The four parts of FEM happen within a single cluster job. The cluster job is configured to use 8 threads.
To configure the job scripts to fit your cluster environment, please modify setup.pl (sub fem) and
abyssrmdupsiterative (function rmdups).

[3.2] Stage 1

Mate-pair reads need to be aligned to a reference genome and exon-exon junction reference for finding
evidence for fusion candidates. However, these alignments are not performed as part of TA. We use
JAGuaR to align reads to genome. For more information, please read:
http://www.bcgsc.ca/platform/bioinfo/software/jaguar
http://www.bcgsc.ca/platform/bioinfo/docs/jaguar/Butterfield_JAGuaR_Nov2011.pdf

When you run this stage, you would see this message:

Please put your code in:
<TA_DIR>/wrappers/setup.pl (sub copy_bam)
for copying JAGUAR's BAM file to the "Reads_to_genome" directory!

Obviously, this stage does not do anything. Please modify setup.pl to suit your needs.

17

http://www.bcgsc.ca/platform/bioinfo/docs/jaguar/Butterfield_JAGuaR_Nov2011.pdf
http://www.bcgsc.ca/platform/bioinfo/software/jaguar

[3.3] Stage 2

This step uses BWA to aligns reads to the meta-assembly from stage 0.
input files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/reads_to_contigs/<LIBRARY>.in
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/merge/<LIBRARY>contigs.fa
Remember from stage 0:
<LIBRARY>.in is a text file that list the paths to input reads files (fastq, fq.gz or bam)

output files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/reads_to_contigs/<LIBRARY>contigs.bam
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/reads_to_contigs/<LIBRARY>contigs.bam.bai

Alternatively, you may align your reads to contigs with other aligners (such as Bowtie or Bowtie2) and
skip stage 2. You must, however, name your output BAM file as <LIBRARY>contigs.bam and put the
BAM file and its index in the reads_to_contigs directory.

[3.4] Stage 3

Stage 3 has been merged to stage 2 in TA 1.3.5.

[3.5] Stage 4

This step performs two tasks.

(i) Aligns contigs in the meta-assembly from stage 0 to the reference genome with BLAT.
input files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/merge/<LIBRARY>contigs.fa
output files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/merge/cluster/<LIBRARY>contigs/output/

seq.*.psl

(ii) Filter the BLAT alignments and generate a UCSC custom track.
input files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/merge/cluster/<LIBRARY>contigs/output/

seq.*.psl
output files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/tracks/

<LIBRARY>.merge.contigs.best.unique.m90.blat.psl

18

[3.6] Stage 5

This step finds novel transcript splicing events.
input files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/tracks/

<LIBRARY>.merge.contigs.best.unique.m90.blat.psl
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/reads_to_contigs/<LIBRARY>contigs.bam
output files:
Please refer to Section "[4.3] Novel Splicing (model_matcher.py)".

[3.7] Stage 6

This step finds candidate gene fusions and large structural rearrangements.
input files:
<TOPDIR>/<LIBRARY>/Reads_to_genome/*.bam
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/merge/cluster/<LIBRARY>contigs/output/

seq.*.psl
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/reads_to_contigs/<LIBRARY>contigs.bam
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/reads_to_contigs/<LIBRARY>contigs.bam.bai
output files:
Please refer to Section "[4.1] Fusion (fusions.py)".

[3.8] Stage 7

This step finds candidate single nucleotide variants, insertions, and deletions.
input files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/merge/cluster/<LIBRARY>contigs/output/

seq.*.psl
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/merge/cluster/<LIBRARY>contigs/input/

seq.*.fa
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/reads_to_contigs/<LIBRARY>contigs.bam
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/reads_to_contigs/<LIBRARY>contigs.bam.bai
output files:
Please refer to Section "[4.2] SNV/INDEL (snv_caller.py)".

[3.9] Stage 8

This step reports the coverage for each gene from the reference genome that was detected.
input files:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/novelty/coverage.txt
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/tracks/

<LIBRARY>.merge.contigs.best.unique.m90.blat.psl
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/reads_to_contigs/<LIBRARY>contigs.bam
output file:
<TOPDIR>/<LIBRARY>/Assembly/abyss1.3.2/novelty/gene_coverage.txt
Please refer to Section "[4.4] Gene coverage".

19

4. Analysis Output

[4.1] Fusion (fusions.py)

Output Description

fusions.tsv Unfiltered fusion events captured by split contig alignments

fusions_filtered.tsv Filtered events, where:
1. <num_read_pairs> >= --min_read_pairs (default: 4) AND <=

--max_read_pairs (default: 2000) <num_read_pairs> =
<flanking_pairs> + minimum(<breakpoint_pairs>)

2. <spanning_reads> >= --min_span_reads (default: 2)

local.tsv “local” events, when:
1. alignment target regions overlap, or
2. alignment target regions overlap same gene, or
3. transcripts mapped by target regions overlap

LOG Run log recording command run and parameters used

Content of fusion_filtered.tsv:

Field Description

id Event ID. Each line represents an event captured by an individual contig.
Identical events will be linked by the first number of of 'id'. Example: 2.1,
2.2, 2.3 represent the same event captured by 3 different contigs. Events are
grouped by <rearrangement> and <breakpoint>

contig contig ID

contig size size(length) of <contig>

genomic_regions The 2 genomic regions the contig aligns to. Format:
chromosomeA:start1-end1,chromosomeB:start2-end2

contig_regions The corresponding contig coordinates of the 2 genomic regions. Format:
start1-end1,start2-end2 (regions in the same order of genomic regions)

strands Relative orientation of the 2 alignments in relation to the genome. Format:
[+|-],[+|-]

flanking_pairs Number of read pairs from reads-to-genome alignments with both mates
flanking the breakpoint, both pointing towards each other

breakpoint_pairs Number of read pairs from reads-to-genome alignments with one mate
spanning the breakpoint and the other mate flanking it, both pointing towards
each other. This is useful for read-support when reads lengths are long
compared to fragment size. Pairs up- and down-stream of the breakpoint are
reported in a 2-member tuple

20

spanning_reads Number of reads spanning junction from contig alignment of reads

rearrangement Underlying genome rearrangement deduced by relative contig alignment
orientations. Can be “translocation”, “deletion”, “inversion”, or “duplication”

breakpoint Junction breakpoint. Format: chrA:coordinate1|chrB:coordinate2

genes Format: GeneA([+|-])GeneB([+|-]), where [+|-] indicates the relative
orientation of the contig alignment to the gene strand, i.e. '+' indicates the
contig aligns in the same direction of the gene strand, '-' indicates the contig
aligns in opposite direction of the gene strand

alignment_params Alignment details, mainly for debug purpose.
Format: TO:,CO:,CC:,I1:,I2:,AF1:,AF2:, where
TO : target overlap fraction = overlap(target_region1, target_region2)/
total_target_region_length
CO : contig overlap fraction = overlap(query_region1, query_region2)/
total_query_region_length
CC : contig coverage = (match_length1 + match_length2 – overlap) /query
length
I1 : percent identity of alignment 1
I2 : percent identity of alignment 2
AF1 = alignment fraction of alignment 1: match_length1/query_length
AF2 = alignment fraction of alignment 2

type Can be:
“gene_fusion” - if a gene resides in both genomic regions
“lsr” - large scale rearrangement, any event not a “gene_fusion”

21

[4.2] SNV/INDEL (snv_caller.py)

Output Description

events.txt Unfiltered snv/indel events captured by gapped contig alignments

events_filtered.txt Filtered events, <event_reads> >= --min_reads_contigs (default: 3)

events_filtered_novel.txt Filtered events not annotated in dbSNP

events_exons.txt Filtered, non-synonymous events residing in gene exons

events_exons_novel.txt Filtered, non-synonymous events residing in gene exons not annotated in
dbSNP

LOG Run log recording command run and parameters used

Content of events_filtered.txt:

Field Description

id Event ID. Each line represents an event captured by an individual
contig. Identical events will be linked by the first number of of 'id'.
Example: 2.1, 2.2, 2.3 represent the same event captured by 3 different
contigs. Events are grouped by <type> and <alt>

type Event type. Can be “snv”, “ins”, “del”, “inv”

chr Chromosome number

chr_start Chromosome start coordinate. If <type> == “ins”, <chr_start> =
coordinate immediately upstream of insertion. If <type> == “del”,
<chr_start> = first base of deletion

chr_end Chromosome end coordinate. If <type> == “ins”, <chr_end> =
<chr_start>. If <type> == “del”, <chr_end> = last base of deletion

ctg Contig ID

ctg_len Length of <ctg> that captures event

ctg_start Contig start coordinate. If <type> == “ins”, <chr_start> = coordinate
immediately upstream of insertion. If <type> == “del”, <chr_start> =
first base of deletion

ctg_end Contig end coordinate. If <type> == “ins”, <chr_end> = <chr_start>.
If <type> == “del”, <chr_end> = last base of deletion

len Length (size) of event

ref Reference allele. If <type> == “ins”, <ref> = “na”

alt Alternative allele. If <type> == “del”, <ref> = “na”

22

event_reads Total number of reads spanning event from reads-to-contig alignment

contig_reads Number of reads spanning event in contig from reads-to-contig
alignment

genome_reads Total number of reads spanning event from reads-to-genome alignment

gene Gene in affected locus.
Format: gene:transcript:[intron|exon]number|effect on open reading
frame (see below)
(if event spans more than 1 exon/intron, the output becomes:
geneA:transcriptA:[intron|exon]numberA|geneB:transcriptB:[intron|
exon]numberB|effect on open reading frame)

repeat-length Length of repeat in alternative allele, e.g. AAAA = 4, CAGCAG = 2

ctg_strand Query strand of alignment in relation to reference

from_end Distance (bases) from event to end of contig

confirm_contig_region Contig coordinate range (start, end) used for checking for event
existence in reads-to-contig alignments

within_simple_repeats Overlap with simple repeats. Name of tandem repeat reported if
overlap is True e.g. TRF_SimpleTandemRepeat_CATC. '-' if overlap is
False.

repeatmasker Overlap with RepeatMasker annotations. Type of repeat reported if
overlap is True e.g. AluSx, LTR47A . '-' if overlap is False.

within_segdup Overlap with segmental duplication. Chromosome:Start_coordinate of
segdup partner reported if overlap is True, e.g. chr1:17048246. '-' if
overlap is False.

at_least_1_read_opposite If at least 1 supporting read is aligned in opposite orientation to rest of
supporting reads. Can be “true” or “false”

dbsnp dbSNP entries if event is already annotated in dbSNP e.g.
rs12028735,rs71510514

23

[4.3] Novel Splicing (model_matcher.py)

Output Description

events.txt Unfiltered novel splicing events not observed in annotations
specified in model_matcher.cfg

events_filtered.txt Filtered events. See below for filtering criteria.

events_summary.txt Tally of unfiltered events by <type>

events_filtered_summary.txt Tally of filtered events by <type>

coverage.txt Transcript coverage

mapping.txt Mapping of contig to annotated transcripts

log.txt Detailed block-by-block mapping of alignments to exons

events_reads Directory containing FASTA files of event-spanning reads. Format
of file names: contig::event_type::chromosome:start-end.fa

events.bed Unfiltered events in bed format

events_filtered.bed Filtered events in bed format

LOG Run log recording command run and parameters used

Contents of events_filtered.txt:

Field Description

id Event ID. Each line represents an event captured by an individual contig.
Identical events will be linked by the first number of <id>. Example: 2.1, 2.2,
2.3 represent the same event captured by 3 different contigs. Events are grouped
by <type> and <coord>.

type Event type. Can be:
AS3: novel 3' splice site
AS5: novel 5' splice site
AS53: novel 5' and 3' splice site (on the same alignment block)
novel_exon: novel exon
novel_intron: novel intron
novel_transcript: novel transcript, when contig cannot be mapped to any known
transcript
novel_utr: novel UTR, when novel alignment blocks exist beyond annotated 5'
and 3' exons of mapped transcript
retained_intron: retained intron
skipped_exon: skipped exon

contig Contig ID

transcript Transcript ID

24

gene Gene name

exons Exon number(s), relative to transcript strand, start from 1

align_blocks Alignment block numbers, counted in ascending order of coordinate, start from 1.
Will be multiple values for skipped_exon, novel_intron, novel_utr, and
novel_transcript

coord Coordinate of novel block. Format: chromosome:start-end

splice Splice site sequence surrounding novel junction e.g. GT-ag(U2/U12), where
U2/U12 is name of splice motif

multi_3 Only applicable to retained_intron events. “True” if the size of the intron
retained is a multiple of 3, i.e. retained open reading frame

size Size of novel block. Only applicable to AS53, novel_exon, novel_intron,
novel_transcript, and novel_utr

orf Effect on open reading frame. See below.

spanning_reads Number of reads spanning novel junction, gathered from reads-to-contig
alignments

contig_coverage Number of reads spanning novel block. If size of novel block is small,
<contig_coverage> will be equal to <spanning_reads>

contig_neighbor Number of reads spanning blocks/junctions immediately upstream and
downstream. This is to inform relative expression levels

read_support 'passed' if the following:
skipped_exon, novel_intron: <spanning_reads> >= minimum_spanning_reads
AS5, AS3, AS53, novel_exon, novel_utr, retained_intron: <contig_coverage> >=
minimum_spanning_reads AND <contig_neighbor>/<contig_coverage> >=
maximum_coverage_differential
novel_transcript: <spanning_reads> of each of the novel junction >=
minimum_spanning_reads

filter 'passed' if read_support == 'passed', and the following:
AS5, AS3, AS53, novel_exon, novel_utr, novel_intron, nove_transcript:
surrounding splice sequences are canonical splice sites
retained_intron: <multi_3> is True

Contents of coverage.txt:

Field Description

transcript Transcript name

gene Gene name

total_coverage Number of exonic bases covered by contig

25

transcript_length Length of <transcript>

best_contig Best contig mapped to <transcript> in terms of bases covered

best_contig_coverage Coverage of <transcript> by <best_contig>

nbr_contigs Number of contigs mapped to <transcript>

contigs List of contigs mapped to <transcript>

contig_coverage Total coverage of <transcript> by <contigs>

Sample line of mapping.txt:

<A> matches (<C>) <D> model:<E>(wt:<F>) in <G> blocks total_blocks=<H>
total_exons=<I> <J> coord:<K> score:<L> events:<M> coverage:<N>

Field Description

A Contig ID

B Transcript name

C Gene name

D CODING or NONCODING (of transcript)

E Gene model initial (specified in model_matcher.cfg e.g. e=Ensembl, r=Refseq)

F Weight of gene model in matching (first model's wt = # models used, second model's wt =
models used – 1, etc)

G Number of alignment blocks mapped to exons

H Total number of blocks in alignment

I Total number of exons in transcript

J “partial_match” or “full_match”. “full_match” if both edges of internal alignment blocks
match and internal edges of outermost blocks match; “partial_match” otherwise

K Coordinate of alignment

L Score = Number of edges matched. AS5 and AS3 junctions considered “matched”

M Number of novel splicing events

N Coverage of transcript

26

[4.4] Gene coverage

Field Description

gene Gene name

nreads Total number of reads covering gene

total_read_length Sum of length of reads covering gene

union_aligned_block_length Total length of union of alignment blocks mapped to gene

normalized_coverage <total_read_length> / <union_aligned_block_length>

5. Miscellaneous

[5.1] Open Reading Frame Effect Descriptors

Throughout the output from TA, a standard nomenclature (used, for example, by the Human Genome
Variation Society) is used to denote the effect of an event on a gene at the protein level. The following
table describes the changes with an example notation and explanation:

Change Example

frameshift A245Sfs (Alanine 235 becomes Serine followed by a frameshift)

deletion V422_S431del (deletion from Valine 433 to Serine 431)

insertion Q484_I485insVA (insertion of Valine and Alanine in between Glutamine 484 and
Isoleucine 485)

indel S293_Y294insKS (Serine 293 to Tyrosine 294 becomes Lysine and Serine)

synon Synonymous/silent

substitution T327S (Threonine 327 to Serine)

6. Technical Support

Please direct your bug reports, questions, and suggestions to the Trans-ABySS Google Group:
trans-abyss@googlegroups.com

You can also read and search existing discussions on the Google Group at:
http://groups.google.com/group/trans-abyss

- End of User Manual -

27

http://groups.google.com/group/trans-abyss
mailto:trans-abyss@googlegroups.com

